
Reconfiguration of Hamiltonian Cycles in Rectangular Grid Graphs

Albi Kazazi
Department of Mathematics and Statistics, York University, Toronto, Canada

January 11, 2026

ORCID: https://orcid.org/0009-0003-0120-4435 Email: ak87@yorku.ca Phone: +1 (416) 878–7650

Mailing Address
Albi Kazazi
24 Delfire Street
Maple, Ontario, Canada
L6A 2L9

Affiliation Address
Department of Mathematics and Statistics

York University
4700 Keele Street

Toronto, ON M3J 1P3, Canada

Abstract

An m × n grid graph is the induced subgraph of the square lattice whose vertex set consists of all
integer grid points {(i, j) : 0 ≤ i < m, 0 ≤ j < n}. Let H and K be Hamiltonian cycles in an m× n
grid graph G. We study the problem of reconfiguring H into K, • where the Hamiltonian cycles
are viewed as vertices of a reconfiguration graph •, using a sequence of local transformations called
moves. A box of G is a unit square face. A box with vertices a, b, c, d is switchable in H if exactly two
of its edges belong to H, and these edges are parallel. Given such a box with edges ab and cd in H,
a switch move removes ab and cd, and adds bc and ad. A double-switch move consists of performing
two consecutive switch moves. If, after a double-switch move, we obtain a Hamiltonian cycle, we say
that the double-switch move is valid.

We prove that any Hamiltonian cycleH can be transformed into any other Hamiltonian cycleK via
a sequence of valid double-switch moves, such that every intermediate graph remains a Hamiltonian
cycle. •Moreover, assuming n ≥ m, the number of required moves is bounded by mn2.•
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Introduction

An m×n grid graph is the induced subgraph of the square lattice whose vertex set consists of all integer
grid points {(i, j) : 0 ≤ i < m, 0 ≤ j < n} with edges between vertices at distance 1. We call the
unit-square faces of the square lattice boxes. A Hamiltonian path (cycle) of a graph G is a path (cycle)
that visits each vertex of the graph exactly once.

Fig. I.1. A 1-complex Hamiltonian
cycle on an 8× 6 grid graph.

The question of whether an m×n grid graph has a Hamiltonian path
was first studied by Itai et al. in [5]. They showed that for an m×n grid
graph to have a Hamiltonian cycle, it is necessary and sufficient that at
least one of m and n is even. Chen et al. gave an efficient algorithm to
construct Hamiltonian paths in rectangular grid graphs [2]. A solid grid
graph is a grid graph without holes, i.e. each bounded face of the graph
is a box. Umans and Lenhart [17] gave a polynomial-time algorithm to
find a Hamiltonian cycle in solid grid graphs, if one exists.

Given any two Hamiltonian cycles H and K, the reconfiguration
problem asks whether it is possible to transform H into K step-by-step, so that each intermediate step
is also a Hamiltonian cycle of G. Nishat and Whitesides [13] introduced the “flip” and “transpose”
moves described below, and a complexity measure called “bend complexity” for Hamiltonian cycles in
rectangular grid graphs. Roughly, a 1-complex Hamiltonian cycle is one in which every vertex of G is
connected to the boundary via a straight line. They prove that using these two moves, it is possible
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to reconfigure any pair of 1-complex Hamiltonian cycles in G into one another. • Equivalently, the
reconfiguration graph of 1-complex Hamiltonian cycles in rectangular grid graphs is connected.•
We dispense with the need for bend complexity constraints, proving the connectivity of reconfiguration
graph of all Hamiltonian cycles in rectangular grid graphs, by using a more general move, which we call
a double-switch move.

Y

X

X 7→ Y

Sw(X)

Y

X

Sw(Y )

Fig. I.2. Illustration of each switch of a general
double-switch move in a 4× 5 grid graph.

Y

X

Let H be a Hamiltonian cycle of an m×n grid graph G.
A box in G with vertices a, b, c, d is considered switchable
in H if it has exactly two edges in H, and these edges
are parallel. Let abcd be a switchable box with edges ab
and cd in H. We define a switch move on the box abcd
in H as follows: remove edges ab and cd and add edges
bc and ad. If X is a switchable box of in H, we denote
a switch move on X by Sw(X).

A double-switch move (or simply a move) is a pair
of switch operations where we first switch X and then find another switchable box Y and switch it, and
denote it by X 7→ Y . If, after a double-switch move, we obtain a new Hamiltonian cycle, we call the
move a valid move.
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Fig. I.3. A flip move.
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X

YLet X = abcd and Y = dcef be boxes sharing the edge cd of G. Assume
that the edges ab, fd, dc and ce belong to H, and that the edges fe, ad and bc
do not. A flip move consists in removing the edges fd, ce and ab, and adding
the edges ad, bc and fe. Effectively, this is the same as first switching X, and
then switching Y . See Figure I.3.
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Fig. I.4. A transpose move.
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Consider the four boxes X = abcd, Y = cbef , Z = cfgh and
W = dchi that are incident on the vertex c. Note that X and
Y share the edge cb, Y and Z share cf , Z and W share ch, and
W and X share cd. Assume that the edges ab, be, ef, fc, cd and
hg belong to H and that the edges ad, bc, ch and fg do not. A
transpose move consists in switching X and then switching Z.
See Figure I.4.

Nishat in [10] showed that flip and transpose moves are always valid. The more general double-
switch moves are sufficient for constructing algorithms that reconfigure arbitrary Hamiltonian cycles in
grid graphs. This comes at the added cost of verifying the validity of each move. We provide such
reconfiguration algorithms and prove the existence of all required moves.

Theorem. Let H and K be any two Hamiltonian cycles in an m × n grid graph G with n ≥ m. Then
there exists a sequence of at most n2m valid double-switch moves that reconfigures H into K.

See [1] for an illustration. • In particular, this yields an explicit mn2 upper bound on the diameter of the
reconfiguration graph of Hamiltonian cycles in m× n grid graphs•. An analogous result for Hamiltonian
paths is treated in [7]. The extension makes use of two additional moves beyond the double-switch: the
switch move and the backbite move, the latter used to relocate the endpoints of a path and originally
introduced by Mansfield [9]. For a description of the backbite move, see Appendix A.2.

Figure I.5. A solid grid graph shaded green, with two distinct
Hamiltonian cycles frozen under the double-switch move.

Scope and extensions. In Section 4 we will
use the condition that the boundary is rectangu-
lar to prove the theorem. This assumption cannot
be relaxed to include all general solid grid graphs.
For example, neither Hamiltonian cycle in Figure
I.5. admits a valid double-switch move, so it is not
possible to reconfigure one into the other through
double-switch moves. While we believe there may

be finer classes of graphs between rectangular grid graphs and solid grid graphs that can be reconfigured
by the double-switch move, it seems likely that such classes would require imposing boundary conditions
on general solid grid graphs.

We conjecture that the double-switch move should also suffice to reconfigure Hamiltonian cycles in
three-dimensional rectangular grid graphs, although we do not yet have a proof. By a three-dimensional
rectangular grid graph we mean the induced subgraph of the cubic lattice whose vertex set is {(i, j, k) :
0 ≤ i < m, 0 ≤ j < n, 0 ≤ k < p} with edges between vertices at distance one. The arguments in this
paper rely on Jordan’s curve theorem, which has no direct analogue in three dimensions. Thus, if this
conjecture is true, the proof would seem to require different techniques.

Applications and related work. A self-avoiding walk is a walk in a lattice where every vertex is
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unique. A Hamiltonian path in a grid graph is an example of a self-avoiding walk. Madras and Slade in
[8] present a comprehensive and rigorous study of self-avoiding walks. One application of the theorem
is in chemical physics, drawing from the theory of self-avoiding walks. Researchers in [16], [6], [4], and
[9] use Monte Carlo methods to study statistical properties of polymer chains, which they abstracted as
cycles and paths in the cubic lattice.

Figure I.6. Two distinct Hamiltonian cycles on 10× 10 grid graphs.

They use self avoiding-walks to model how
a flexible polymer chain is arranged in a liq-
uid solution. A polymer chain’s concentra-
tion is the fraction of vertices of the lattice
that are occupied by the vertices (monomers)
of the polymer. The authors consider max-
imally concentrated polymers (high density
polymers), where all the space is occupied by
the polymer. These can be naturally repre-
sented as Hamiltonian paths or cycles. They
view the set of Hamiltonian cycles in a rectangular grid graph as the state space of a Markov chain, with
the double-switch move being the transition mechanism. Given a Hamiltonian cycle (a state in the state
space), we choose two switchable boxes at random and perform a double-switch move. If the move is
valid, then the new state is the resulting Hamiltonian cycle. Otherwise, we remain at the initial state and
choose another pair of switchable boxes. The idea is that after a sufficiently large number of transitions,
we obtain a set with many different states, which represents a reasonable random sample of the entire
state space. The validity of these methods requires uniform random sampling of the entire state space,
which in turn requires the Markov chain to be irreducible (i.e., any Hamiltonian cycle can be reconfig-
ured into any other through a sequence of valid moves). The authors in [16, 6, 4, 9] assume irreducibility,
but do not prove it. For a more detailed discussion on Monte Carlo methods and reconfiguration of
self-avoiding walks, see Chapter 9 in [8].

Nishat, Whitesides, and Srinivasan extended the result of [13] to 1-complex Hamiltonian paths in
rectangular grid graphs [12, 11, 15], and to 1-complex Hamiltonian cycles in L-shaped grid graphs [14].
The authors define a 1-complex s,t Hamiltonian path to be a 1-complex Hamiltonian path that begins
and ends at diagonally opposite corners s and t of a rectangular grid graph. We note that the results
[12], [11], and [15] are extended to arbitrary s,t Hamiltonian paths in [7].

The rest of the paper is organized as follows. In Section 1 we introduce notation and definitions, prove
some lemmas about the structure that a Hamiltonian cycle imparts on a grid graph, and some other
lemmas characterizing the validity of double-switch moves. In Section 2, we state the algorithm required
for the proof of the main result, and show that it depends on the existence of a further two algorithms,
the MLC and the 1LC. In Section 3 we prove the MLC and 1LC algorithms. The 1LC proof depends on
a lemma whose proof takes up all of Section 4.

1 Preliminaries

A grid graph is a subgraph of the integer grid Z2. A lattice animal is a finite connected subgraph of Z2.
A Hamiltonian path (cycle) of a graph G is a path (cycle) that visits each vertex of the graph exactly
once. Assume that G has a cut vertex v. Then G cannot have a Hamiltonian cycle. Let G1, G2 be the
components of G\v. Let H1 be a Hamiltonian path of G\G1 and let H2 be a Hamiltonian path of G\G2

such that H1 and H2 have v as an end-vertex. Then a Hamiltonian path H of G can be obtained by
concatenating H1 and H2. Since H1 and H2 are smaller than H they are easier to find and to reconfigure.
It follows that a graph that cannot be decomposed in this manner must be 2-connected. Thus, from here
on, we will restrict our attention to 2-connected grid graphs.

Definitions. Let G be a grid graph and let H be a Hamiltonian cycle of G. We denote the set of boxes
of a grid graph G by Boxes(G). We will need some definitions to navigate G and H. Position G in
the first quadrant so that its westernmost vertices have x-coordinate 0 and southernmost vertices have
y-coordinate 0. We use the x and y coordinates to describe a rectangle in the graph and denote it by
R(k1, k2; l1, l2). This rectangle corresponds to the Cartesian product of the intervals (k1, k2) and (l1, l2).
We will denote a box of G by R(k, l) where k and l are the coordinates of the corner of the box that is
closest to the origin. That is, R(k, l) = R(k, k + 1; l, l + 1).

We specify a vertex v by v(k, l), where k and l are the vertex coordinates. We denote a horizontal
edge e by e(k1, k2; l1), where k1, k2 are the x-coordinates of the vertices of e and l1 is the y-coordinate
of the vertices of e. Similarly, we write e(k1; l1, l2) for vertical edges. It will be convenient to use the
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notation {u, v} to describe edges of G and the notation (u, v) to describe directed edges of G. For a
directed edge e = (u, v), u is said to be the tail of e and v is said to be the head of e.

Let G′ be a subgraph of G. Then we write G′ + (x, y) to denote the translation of G′ by (x, y).

Theorem 1.1. Jordan’s Curve Theorem for polygons (JCT). A polygon Q divides the set of points of
the plane not on Q into two disjoint subsets Int (for “Interior”) and Ext (for “Exterior”) that have Q as
a common boundary and are such that any two points within a subset can be joined by a path that does
not intersect Q while any path joining a point of Int to a point of Ext must intersect Q. □

0

n-1

m-1

Fig. 1.1. A 6×5 grid graph.

We record here a useful consequence of Jordan’s curve theorem.

Corollary 1.2. Let p1 and p2 be points on the plane not on Q. If the
segment [p1, p2] intersects Q exactly once at a point q, where q is not a
vertex of Q, then one of p1 and p2 is on Ext and the other is on Int. □

Recall that a solid grid graph is a grid graph without holes. Note that an
m × n grid graph is a solid grid graph such that the outer boundary is an (m − 1) × (n − 1) rectangle,
with corners at (0, 0), (m− 1, 0), (m− 1, n− 1), and (0, n− 1). We call this rectangle the boundary of G.

Definitions. Let G be an m × n grid graph and let X1, X2 be two distinct boxes of G. If X1 and X2

share an edge of G, we say that X1 and X2 are adjacent. Define a walk of boxes in G to be a sequence
X1, ..., Xr of boxes in G, not necessarily distinct, such that for all j ∈ {1, 2, ..., r − 1}, Xj is adjacent to
Xj+1 or Xj = Xj+1, We denote such a walk by W (X1, Xr). For each j ∈ {1, ..., r − 1}, we call the edge
of G that Xj and Xj+1 share a gluing edge of W (X1, Xr), whenever Xj and Xj+1 are distinct boxes.
If for all i, j ∈ {1, 2, ..., r} with i ̸= j, Xi is distinct from Xj , we call the sequence a path of boxes in
G and denote it by P (X1, Xr). A cycle of boxes in G is a walk X1, ..., Xr such that X1 = Xr and for
i, j ∈ {1, ..., r − 1} Xi ̸= Xj .

•The rest of Section 1 contains definitions and technical results used in Sections 2-4. Our reconfiguration
strategy relies on controlling which edges belong to the Hamiltonian cycle by applying moves. To analyze
when moves can add or remove specific edges while preserving the Hamiltonian property, we need to
understand how the Hamiltonian cycle H decomposes the grid graph into components that we call H-
components. This decomposition is introduced in Section 1.1. In section 1.2 we define the Follow-the-wall
construction and use it to build walks of boxes that respect the structure of H, called H-walks. H-walks
are used extensively in many proofs throughout the rest of the paper. In Section 1.3 we prove some basic
properties of H-components; In section 1.4 we give a more detailed description of double-switch moves
and prove a lemma about their validity. •

1.1 The H-decomposition of G

Fig. 1.2. An m× n grid graph G shaded blue,
a subgraph H of G in blue, BBoxes(G) shaded

green, an H-cycle in G dotted red.

Definitions. A walk (of length r) in a graph is an alternating
sequence v0e1v1e2....ervr of vertices and edges. Define a lazy
walk to be sequence of edges and vertices where every edge is in
between two vertices that are its endpoints, and in between every
two edges there is a vertex or multiple copies of a vertex. That
is, a lazy walk is roughly a walk in which consecutive vertices
can be the same, allowing the walk to remain at a vertex for one
or more steps without traversing any edges.

Let G be an m× n grid graph and let H be any subgraph in
G. Let X1, X2 be two adjacent boxes of G. If E(X1) ∩E(X2) ∩
E(H) = ∅, we say that X1 and X2 are H-neighbours or X1 is H-adjacent to X2. Define an H-walk of
boxes in G (H-walk) to be a sequence X1, ..., Xr of boxes in G, not necessarily distinct, such that for all
j ∈ {1, 2, ..., r − 1}, Xj is an H-neighbour of Xj+1 or Xj = Xj+1.

If for all i, j ∈ {1, 2, ..., r} with i ̸= j, Xi is distinct from Xj , we call the sequence an H-path of boxes
in G and denote it by P (X1, Xr). Let r ≥ 4. Define an H-cycle of boxes in G (H-cycle) to be a set
X1, X2, ..., Xr = X1 of boxes in G such that for each j ∈ {1, 2, ..., r − 1}, Xj is an H-neighbour of Xj+1

and the boxes X1, ..., Xr−1 are distinct. Let C be an H-cycle of boxes in G. We note that every box of
C has exactly two gluing edges. Proposition 1.3 will show that if H is a Hamiltonian cycle of G, then
there are no H-cycles of boxes in G.
Define a boundary box of G to be a box that is incident on the boundary of G but that is not a box
of G. denote the set of boundary boxes of G by BBoxes(G). Define G−1 to be the graph with vertex
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set V (G−1) = V (G) ∪ V (BBoxes(G)) and edge set E(G−1) = E(G) ∪ E(BBoxes(G)). We extend the
definitions of H-walks, H-paths and H-cycles to G−1. See Figure 1.2 for an illustration.

e

a

b

Xi

Fig. 1.3. P (a, b) in blue, gluing edges of C in
orange, Q in dark green, C shaded in light green.

Proposition 1.3. Let G be an m× n grid graph and let H be
Hamiltonian cycle of G. Then every H-cycle in G−1 is contained
in BBoxes(G).

Proof. By way of contradiction assume that there is an H-cycle
C in G−1 with boxes X1, X2, ..., Xr = X1 that has a box Xi

contained in G. Let c1, c2, ..., cr = c1 be the centers of the boxes
of C. That is, if Xj = R(k, l) then cj = (k+ 1

2 , l+
1
2 ). Note that

for each j ∈ {1, 2, ..., r − 1}, [cj , cj+1] intersects the gluing edge
of Xj and Xj+1 and [cj , cj+1] intersects no other edge of G−1.

We will first show that the set of segments [cj , cj+1] is a
non-self-intersecting polygon Q. Since c1 = cr, Q is a polygon.

For a contradiction assume that Q is self intersecting, so there are points cj−1, cj , cj+1 and ci such
that the segments [cj−1, cj ], [cj , cj+1] and [cj , ci] are edges of Q. But then Xj has three gluing edges, a
contradiction.

By JCT, Q divides the plane into two subsets Int and Ext such that any two points within a subset
can be joined by a path that does not intersect Q while a path joining a point of Int to a point of Ext must
intersect Q. Let V (Int) be the vertices of G−1 contained in Int and let V (Ext) be the vertices of G−1
contained in Ext. Note that any box of C contains at least one vertex in V (Int) and one vertex in V (Ext),
so both sets are nonempty. In particular, this is true for Xi. For definiteness, assume that a ∈ V (Xi)
is contained in V (Int) and b ∈ V (Xi) is contained in V (Ext). By JCT, V (Int) ∪ V (Ext) = V (G) and
V (Int)∩V (Ext) = ∅. Consider the subpath P (a, b) of H. By JCT again, there is an edge e ∈ P (a, b) ⊂ H
intersecting Q at some segment [cj , cj+1]. But then e is a gluing edge of C, so e cannot belong to H. □
Let G be an m×n grid graph and let H be a Hamiltonian cycle of G. Let X1, ..., Xr be a set of boxes in
G such that for any i, j ∈ {1, 2, ..., r}, there is an H-path P (Xi, Xj) between Xi and Xj contained in G.
We call Xi and Xj the end-boxes of P (Xi, Xj). We say that Xi and Xj are H-path-connected in G and
the set of boxes {X1, ..., Xr} is an H-path connected set of boxes in G. If the set {X1, ..., Xr} contains no
cycles of boxes we call it an H-tree. A H-component of G is a maximal H-path connected set of boxes.

Corollary 1.4. A Hamiltonian cycle H partitions the boxes of G into H-path-connected H-components
which are maximal H-trees. In particular, if an H-path is contained in an H-component, that H-path is
unique. □

1.2 The follow-the-wall construction

Definitions. Let G be a graph. A trail is a walk in G where all edges are distinct. A trail where the first
and last vertices coincide is called a closed trail or a circuit. A directed walk (of length s) is an alternating
sequence v0e1v1e2....esvs of vertices and directed edges such that for j ∈ {1, ..., s}, the directed edge ej
has tail vj−1 and head vj . A directed trail is a directed walk where all directed edges are distinct. We

will use the notation
−→
K to denote directed trails.

Let the box X be incident on a directed edge (u, v) of the integer grid. Then X and its vertices
not incident on the edge ej are either on the right or on the left side of (u, v). See Figure 1.4 for an
illustration and Appendix A.1 for a more precise definition of a box being on the right or left side of a
directed edge. Note that if X is on the right side of (u, v), then the other box incident on (u, v), say X ′,
is on the right side of (v, u).

u

v
w

Xi

Xi+1

Fig. 1.4 (i). w is
right of ej .

u

v

w

Xi

Xi+1

Fig. 1.4 (ii). w ̸= u
is collinear with ej .

u

v
w

v′

Xi

Xi+1Xi+2

Fig. 1.4 (iii). w is
left of ej .

Let H be a cycle in an m × n grid graph
G. Let K = v1, ..., vs+1 be a subpath of H.

We orient K to obtain a directed trail
−→
K =

(v1, v2), ..., (vs, vs+1) = e1...., es. We will use
−→
K to construct an H-walk of boxes in G−1
that we will call the right H-walk induced

by
−→
K and denote it by W−→

K,right
(X1, Xr),

where X1 and Xr are the end-boxes of
W−→

K,right
(X1, Xr). Roughly, W−→K,right,

(X1, Xr) will be the walk of boxes that a “walker” would encounter

as they followed along the side of
−→
K when starting on the right side of the first edge e1 of

−→
K . We will

call this construction the follow-the-wall construction (FTW). This is very similar to the well-known
hand-on-the-wall maze-solving algorithm.
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Let X be the box of G−1 on the right of the edge e1 of
−→
K and let ej be the jth edge of

−→
K . Then

X = X1 is the first box of the H-walk. Let ej = (u, v), ej+1 = (v, w) and let Xi be on the right of the
edge ej . There are three possibilities for the position of w with respect to (u, v): w is right of (u, v),
w ̸= u is colinear with (u, v) and w is left of (u, v). For the last case define e′j = (v, v′) to be the edge in
G−1 \H that is colinear with ej and set e′′j = (v′, v). See Figure 1.4.

(i) w is right of ej. Then Xi+1 is on the right of the edge ej+1. Note that in this case, the walk has a
repeated box since Xi = Xi+1.

(ii) w ̸= u is collinear with ej. Then Xi+1 is on the right of the edge ej+1.

(iii) w is left of ej. Then Xi+1 is on the right of the edge e′j and Xi+2 is on the right of the edge ej+1.

Y1 Y2 Y3

Y4 Y5 Y6

Y7 Y8 Y9

e1 e2

e3
e4

Fig. 1.5. A subtrail
−→
K =

−→
K(e1, e4) of a

Hamiltonian cycle of a grid graph G in blue;

Φ(
−→
K, right) = Y1Y2Y3Y6Y9Y8 shaded orange

and Φ(
−→
K, left) = Y4Y5Y5Y5 shaded green;

silhouette in gray following the wall along e3.

We say that the edge ej+1 adds to the H-walk W−→
K,right

(X1, Xr)

the box Xi+1, in cases (i) and (ii), and boxes Xi+1 and Xi+2

in case (iii). If es adds more than one box to W−→
K,right

(X1, Xr)

then we will adopt the convention that Xr is the last box added
by the edge es and that all the boxes added by each edge of ej ,
j ∈ {1, ..., s} are on the right side of ej . Note that this convention
is necessary for the box Xi+1 in Case (iii). We remark that the
first edge e1 can only add the single box X1. The left H-walk

W−→
K,left

(X1, Xr) induced by
−→
K can be constructed analogously.

Let H denote either a path or a cycle in G. Let K(H) be
the set of all directed subtrails of H. We can view the FTW
construction as a function Φ that assigns an H-walk to elements
of K(H) × {right, left}. We will take a closer look at H-trails in
the case where H is a Hamiltonian cycle of G.

Let H = v1, ..., vr, v1 be a Hamiltonian cycle in G. Orient H as a directed circuit
−→
KH . We observe that

it is possible to choose a starting edge ej = (vj , vj+1) of
−→
KH so that the directed circuit

−→
KH = ej , ej+1,

..., ej−1 is such that Boxes(Φ(
−→
KH , right)) ∪Boxes(Φ(

−→
KH , left)) = Boxes(G−1). We record an equivalent

statement for reference as Observation 1.5 below. From here on, all circuits
−→
KH will be assumed to

satisfy Observation 1.5.

Let H = v1, v2, ..., vr, v1 be a Hamiltonian cycle in G. Note that any subtrail of
−→
KH is completely

determined by its first and last edges. Therefore, it will be fitting to use the notation
−→
K(es, et) to denote

the unique subtrail starting at edge es and ending at edge et.

1.3 Properties of H-components

Observation 1.5. Let G be an m×n grid graph and let H be a Hamiltonian cycle of G. Then for every

box X in G−1 there is an edge e of
−→
KH and side ∈ {right, left} such that e adds X to W−→

KH , side
.

Lemma 1.6. Let G be an m× n grid graph and let Q = v1, ..., vr, v1 be any cycle in G and let U be the

region bounded by Q. Orient the edges of G into the directed circuit
−→
KQ = (v1, v2), ..., (vr, v1). Then

Boxes(Φ(
−→
KQ, right)) ⊆ U and Boxes(Φ(

−→
KQ, left)) ⊆ G−1 \ U iff Φ((v1, v2), right) is a box of U .

Proof. This follows from Corollary 1.2, the definition of FTW, and induction on the edges of
−→
KQ. □

Note that, by JCT, H divides the boxes of G−1 into the disjoint sets int(H) and ext(H), where int(H)
is the bounded region.

Proposition 1.7. Let G be an m× n grid graph and let H be a Hamiltonian cycle of G. Then int(H)
is an H-component of G.

Proof. Let H = v1, ..., vr, v1 and, for definiteness, assume that Φ((v1, v2), right) ∈ int(H). By Lemma 1.6,

Boxes(Φ(
−→
KH , right)) ⊆ int(H) and Boxes(Φ(

−→
KH , left)) ⊆ G−1\int(H) = ext(H). Since H is contained in

G and H is the boundary of int(H), int(H) is contained in G. We check that int(H) is H-path-connected
and maximal.
Consider any box Z ∈ int(H). By Observation 1.5, there is an edge e ∈

−→
KH such that e adds Z to

Φ(
−→
KH , left) or e adds Z to Φ(

−→
KH , right). The former implies that Z belongs to ext(H), contradicting

6



that Z ∈ int(H). It must be the case that Z ∈ Boxes(Φ(
−→
KH , right)), which is H-path connected. Note

that this also shows that int(H) = Boxes(Φ(
−→
KH , right)).

To see that int(H) is maximal, we note that G ⊂ int(H) ∪ ext(H) and that int(H) ∩ ext(H) = ∅, so
int(H) cannot be extended. □

Corollary 1.8. Let G be an m×n grid graph, H = v1, ..., vr, v1 be a Hamiltonian cycle of G, and assume

that Φ((v1, v2), right) is a box of int(H). Then Boxes(Φ(
−→
KH , right)) = int(H) and Boxes(Φ(

−→
KH , left)) =

ext(H). □
Let G be an m × n grid graph and let H be a Hamiltonian cycle of G. Let J0, J1, ..., Js be the H-
components of G, where J0 = int(H). It follows from Proposition 1.7 that BBoxes(G) = G−1 \ G is
contained in ext(H) and that all other components J1, ..., Js of G are contained in ext(H) \ BBoxes(G).
We write this as Observation 1.10 below for reference. We call the H-components J1, ..., Js cookies of G.
If a cookie J has more than one box, we call J a large cookie. Otherwise, we say that J is a small cookie.

Let J be a cookie of G. We define a neck of J to be a box NJ of J that is incident on a boundary
edge eJ of G with eJ /∈ H. We call eJ a neck-edge of J . Note that the other box incident on eJ must be
in G−1 \G. With these definitions, Lemma 1.6 has the following corollary:

Corollary 1.9. Let G be an m× n grid graph and let H be a Hamiltonian cycle of G, and let J0, ..., Js
be the H-components of G. Then every edge of H is incident on a box of J0 and a box of G−1 \ J0. □

Observation 1.10. Let J be an H-component of G. Then J ⊆ int(H) or J ⊂ ext(H).

Corollary 1.11. Let X and Y be boxes of an H-component J . Then X and Y are on the same side of−→
KH .

Lemma 1.12. Let G be an m× n grid graph, let H be a Hamiltonian cycle of G, and let J be a cookie
of G. Then J has a unique neck.

Proof. If J only has one box, we are done, so assume that J has more than one box. Let Z be a box of

J . By Observation 1.5, we may assume, WLOG, that Z is on the left of ez ∈
−→
KH . If no edge is incident

on Z, we choose one of the four neighbours beside it.

et

ez

NJ

Y

Z

Fig. 1.6. Φ
(−→
K(ez, et), left

)
shaded in blue.

We claim that there exists a subtrail
−→
K(ez, et+1) of

−→
KH such that

Φ
(−→
K(ez, et), left

)
is contained in J but Φ

(−→
K(ez, et+1), left

)
is not. As-

sume for contradiction that for every subtrail of
−→
KH starting at ez,

Φ
(−→
K(ez, ej), left

)
is contained in J , where j ∈ {z + 1, ..., z}. But then

Φ
(−→
KH , left

)
is contained in J ⊂ Boxes(G), contradicting that Φ

(−→
KH , left

)
contains the boxes of G−1 \G. It follows that et+1 adds the first box Y of

Φ
(−→
K(ez, et+1), left

)
that is not contained in J . Note that, by definition of

H-component, Y must belong to G−1 \ G. (Since Y is H-adjacent to the
box X preceding it, but Y does not belong to J , it must be the case that Y

is not in G). Let X be the box of J preceding Y in Φ
(−→
K(ez, et+1), left

)
. We

have that X and Y are H-adjacent and share a boundary edge eJ of G that is not in H. By definition
of neck of an H-component, X = NJ .

To see that the neck of J is unique, assume for contradiction that J has at least two necks, N1 and
N2. By Corollary 1.8, ext(H) is H-path-connected. Let N ′1 and N ′2 be the boxes in BBoxes(G) that are
adjacent to N1 and N2, respectively. Then there is an H-cycle P (N ′1, N

′
2), P (N2, N1) in G−1 that is not

contained in BBoxes(G), which contradicts Proposition 1.3. □

Lemma 1.13. Let G be an m× n grid graph, let H be a Hamiltonian cycle of G, and let J be a cookie
of G with neck NJ . Orient H and let (vx, vx+1) and (vy−1, vy) be edges of NJ in H, where {vx, vy} is a

boundary edge of G. Then V (J) = V (
−→
K((vx, vx+1), (vy−1, vy))).

Proof. Let
−→
K1 =

−→
K((vx, vx+1), (vy−1, vy)) and

−→
K2 =

−→
K((vy, vy+1), (vx−1, vx)), and note that

−→
KH =

−→
K1,

−→
K2. For definiteness, assume that NJ = Φ((vx, vx+1), right).

Let vz ∈ V (J). Assume for contradiction that vz /∈
−→
K1. Then vz ∈

−→
K2. Let Z be a box of J on

which vz is incident, and let ez be the edge of
−→
K2 containing vz that adds Z to Φ(

−→
KH , right). Note that

we used Corollary 1.11 here. By proof of Lemma 1.12, there is a subtrail
−→
K(ez, et) of

−→
KH such that

Φ(
−→
K(ez, et), right) is contained in J but Φ(

−→
K(ez, et+1), right) is not contained in J . (If no edge of H is

7



incident on Z we can just consider
−→
K(ez−1, et) instead.) Note that this implies that et must add NJ to

Φ(
−→
K(ez, et), right). Then et = (vx, vx+1) or et = (vy−1, vy).

NJ

N ′
J

vx vy

vy−1vx+1

vx−1 vy+1

Fig. 1.7. G−1 \G
shaded in green.

Let N ′J be the neighbour of NJ in G−1 \ G. Note that N ′J ∈ Φ(
−→
K

(ez, (vx, vx+1)), right) and so Φ(
−→
K(ez, (vx, vx+1)) is not contained in J . Then

it must be the case that et = (vy−1, vy).

Since ez ∈
−→
K2 and et = (vy−1, vy) ∈

−→
K1, there must be some j0 ∈ {z, z +

1, ..., y − 2} such that for each j ≤ j0, ej ∈
−→
K2, but ej0+1 ∈

−→
K1. It follows that

ej0+1 = (vx, vx+1) or ej0+1 = (vy−1, vy).

Note that if ej0+1 = (vy−1, vy) then (vy−2, vy−1) = ej0 . But (vy−2, vy−1) ∈
−→
K1, contradicting ej0 ∈

−→
K2.

Then it must be the case that ej0+1 = (vx, vx+1). But then Φ(
−→
K(ez, ej0), right) contains Φ(ej0 , right),

which belongs to G−1 \G, contradicting that Φ(
−→
K (ez, ej0), right) is contained in J . Thus we must have

that vz ∈
−→
K1.

It remains to check that V (
−→
K1) ⊆ V (J). We will prove that

−→
K1 ⊆ E(J). For i ∈ {x, x+ 1, ..., y− 1}, let

ei = (vi, vi+1). Note that if
−→
K(ex, ei) ⊆ E(J) then Φ(

−→
K(ex, ei), right) ⊂ J . This follows by definition of

FTW and induction on the edges of
−→
K(ex, ei).

We have that ex ∈
−→
K1 ∩ E(J). Assume for contradiction that there exists some j0 ∈ {x + 1, x +

2, ..., y − 3}1 such that
−→
K(ex, ej0) is contained in E(J) but

−→
K(ex, ej0+1) is not. Since ej0+1 /∈ E(J),

we have that Φ(
−→
K(ex, ej0), right) is contained in J but Φ(

−→
K(ex, ej0+1), right) is not. Let Z be the

first box of Φ(
−→
K(ex, ej0+1), right) that is not contained in J and let Z ′ be the box preceding Z in

Φ(
−→
K(ex, ej0+1), right). The fact that Z ∈ J and Z ′ /∈ J are H-neighbours implies that Z ′ = NJ . Since

ej0+1 adds Z to Φ(
−→
K(ex, ej0+1), right), ej0+1 = ex or ej0+1 = (vy, vy+1). But both possibilities contradict

that j0 ∈ {x+ 1, x+ 2, ..., y − 3}. □

Let H be a subgraph of G. A box of G on vertices a, b, c, d is switchable in H if it has exactly two edges
in H and the edges are parallel to each other. •We call e box of G with exactly three edges in H a leaf.•

Lemma 1.14. Let G, H and J0, ..., Js be as in Corollary 1.9. Then a large cookie has exactly one
box incident on a boundary edge of G, namely its neck. Furthermore, the neck of each large cookie is
switchable.

Proof. First we show that a large cookie has exactly one box in incident on a boundary edge of G, namely
its neck. Let Ji be a cookie. By Lemma 1.12, Ji has a neck NJi and NJi is incident on the boundary of
G. Suppose that there is another box X of Ji that is incident on B0. Note that X ∈ G−1 \ J0. Let e be
the boundary edge of X and let Y be the box in G−1 \ G that is incident on e. Then e ∈ H or e /∈ H.
Note that e /∈ H contradicts Lemma 1.12 so we only need to check the case where e ∈ H. Suppose that
e ∈ H. By Corollary 1.9, Y ∈ J0 ⊂ G, contradicting that Y ∈ G−1 \G.

Now we show that the neck of each large cookie is a switchable box. Let X = R(k, l) be the neck of a
cookie Ji. Let v(k, l) = a, v(k+ 1, l) = b, v(k+ 1, l+ 1) = c and v(k, l+ 1) = d. For definiteness, assume
that {a, b} is the neck edge of Ji. Observe that we must have 0 < k < m− 1. It follows that {a, d} ∈ H
and {b, c} ∈ H. Since Ji is not a small cookie {c, d} /∈ H. Thus, X is switchable. □

1.4 Moves

Definitions. Let G be an m × n grid graph and let H be a Hamiltonian cycle of G. Let abcd be a
switchable box with edges ab and cd in H. A switch move on the box abcd in H removes edges ab and
cd and adds edges bc and ad. Let X ∈ G be a switchable box in H. We write Sw(X) to denote a switch
move.
A double-switch move is pair of switch moves where we first switch X and then find a switchable Y and
switch it. We denote a double-switch move by X 7→ Y . See Figure 1.9. If after a double-switch, we get
a new Hamiltonian cycle, then we call the move a valid move. We call X 7→ X a trivial move.
Orient H as directed cycle v1, ..., vr, v1. Let X be a switchable box in H with edges e1 = (vs, vs+1) and
e2 = (vt, vt+1). If vs is adjacent to vt in G, we say that e1 and e2 are parallel ; and if vs is adjacent to
vt+1 in G, we say that e1 and e2 are anti-parallel. Similarly, we call the box X a parallel (anti-parallel)
box if its edges are parallel (anti-parallel).

1Φ(ey−1, right) = NJ , so j0 ≤ y − 3

8



Let J be a large cookie with neck NJ . We call a valid flip move NJ 7→ N ′J a neck-shifting flip (NSF) move.
Observe that after a NSF move, the large cookie J necessarily becomes the large cookie (J ∪N ′J) \NJ ,
with new neck N ′J .

We define a cascade to be a sequence of moves µ1, ..., µr such that for 0 ≤ j ≤ r − 1:
1) µ1 is valid,
2) if µ1, ..., µj have been applied then µj+1 is valid, and
3) the sequence may contain NSF moves but does not otherwise create any new cookies.

Let H be a Hamiltonian e-cycle of an m × n grid graph G and let J be a cookie of H with neck NJ .
Consider a cascade µ1, ..., µr where µr is the nontrivial move Z 7→ NJ . We say that the cascade µ1, ..., µr

collects the cookie J . Note that all double-switch moves are invertible. For non-adjacent boxes X and
Y , the moves X 7→ Y and Y 7→ X. When X and Y are adjacent with X switchable and Y a leaf (i.e.
X 7→ Y is a flip move), X must be switched first before Y becomes switchable, so the order matters.

Lemma 1.15. Let G be an m × n grid graph and let H be a Hamiltonian cycle of G. Orient H as a
directed cycle v1, ..., vr, v1. Then every switchable box of H is anti-parallel.

Proof. Assume for contradiction that there is a box X in H with parallel edges e1 and e2. For definiteness

assume that X = R(k, l), e1 = e(k, k+1; l), e2 = e(k, k+1; l+1) and that Boxes(Φ(
−→
KH , right)) = int(H).

But then X = Φ(e2, right) ∈ int(H) and Φ(e1, right) ∈ int(H), contradicting Corollary 1.9. □

v1 vr

vs

vs+1

vt

vt+1

X

Sw(X)

H

Fig. 1.8 (a). A directed
Hamiltonian cycle H,
X is switchable, e1 and
e2 are anti-parallel.

v1 vr

vs

vs+1

vt

vt+1

X

H1H2

Fig. 1.8 (b). Cycles
H1 and H2, obtained
from H after Sw(X).

We will show below that if we switch a switchable box
of H we get a cycle H1 and a cycle H2. We define a
(H1, H2)-port to be a switchable box of H1∪H2 that has
one edge in H1 and the other in H2.

Lemma 1.16. Let G be be an m× n grid graph and let
H be a Hamiltonian cycle of G. Orient H as a directed
cycle v1, ..., vr, v1. Let X be a switchable box of H with
edges e1 = (vs, vs+1) and e2 = (vt, vt+1), with s+ 1 < t.

(i) Sw(X) splits H into two cycles, H1 and H2.
(ii) Suppose we apply Sw(X). If Y is an (H1, H2)-port then X 7→ Y is a valid double-switch move.

Proof. Removing edges e1 and e2 splits H into two disjoint paths P1 = P (vs+1, vt) and P2 = P (vt+1, vr),
{vr, v1}, P (v1, vs) = P (vt+1, vs). By Lemma 1.15, e1 and e2 are anti-parallel. Then we have that vs is
adjacent to vt+1 and vs+1 is adjacent to vt. Now ; adding e′1 = (vs+1, vt) gives a cycle H1 = P1, e

′
1; and

adding e′2 = (vs, vt+1) gives a cycle H2 = P2, e
′
2. End of proof for (i).

The proof of (ii) is essentially the same as the proof for (i), so we omit it. □

X Y

Sw(X)

Fig. 1.9 (a). A
Hamiltonian e-cycle
H on a 4× 4 grid;
X is switchable.

X Y

Sw(Y )

Fig. 1.9 (b). Hcycle

and Hpath after
switching X. Note

that Y is an
(Hcycle, Hpath)-port.

X Y

Fig. 1.9 (c). A Hamil-
tonian e-cycle H ′

after switching Y .

Hamiltonian e-cycles. Let G be an m×n grid
graph, let H be a Hamiltonian cycle of G and let
e be an edge of H that lies in the boundary of
G. We call the path H ′ = H \ e a Hamiltonian e-
cycle of G. We remark that all the definitions and
results about the case where H is Hamiltonian cy-
cles of G translate immediately to the case where
H ′ is a Hamiltonian e-cycle of G. We may just
add back the edge e incident on the end-vertices
of the H ′ to obtain the cycle H. All relevant
properties we have observed remain unchanged.

Section 2 contains algorithms we can use to reconfigure one Hamiltonian cycle (e-cycle) into another.
Proofs of existence for the algorithms are in Section 3. Section 4 contains proofs of auxiliary results
required in Section 3.

1.5 Appendix

B

A

P

−→
d∥

−→
d⊥

−→
d

−→n

Fig. 1.10. P on the right of
−→
AB.

A.1. Let A = (x1, y1), B = (x2, y2) and P = (x, y) be points in the plane
that are not collinear. We define (x2 − x1, y2 − y1) as the direction of

the vector
−−→
AB. Then the direction of the normal −→n to

−−→
AB, obtained by

rotating
−−→
AB by −π

2 , is (y2 − y1, x1 − x2). We want to know whether the
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point P is on the side of
−−→
AB toward which −→n is pointing. Let

−→
d =

−→
AP . Let

−→
d⊥ be the component of

−→
d

that is perpendicular to
−−→
AB and let

−→
d∥ be the component of

−→
d that is parallel to

−−→
AB. Note that:

−→
d ·−→n = (

−→
d∥+

−→
d⊥)·−→n =

−→
d⊥ ·−→n = (x−x1, y−y1)·(y2−y1, x1−x2) = (x−x1)(y2−y1)+(y−y1)(x1−x2).

Point P is on the right of
−−→
AB if

−→
d · −→n > 0, and on the left if

−→
d · −→n < 0. Let e = (u, v) be an edge of

a grid graph G, where u = v(k1, l1), v = v(k2, l2). Let X be a box of the square lattice that is incident
on (u, v). We say that X is on the right of the edge (u, v) if there is a vertex w = v(k, l) in V (X) \ V (e)
such that (k− k1, l2 − l1)+ (l− l1, k1 − k2) = 1 and we say that X is on the left of the edge (u, v) if there
is a vertex w = v(k, l) in V (X) \ V (e) such that (k − k1, l2 − l1) + (l − l1, k1 − k2) = −1.

vr

v1
vs

vs−1

vr

v1
vs

vs−1

Fig. I.11. An illustration of a backbite move.

vr

v1
vs

vs−1

A.2. Let H be a Hamiltonian path v1, . . . , vr of an m×n
grid graph G, and let vs be adjacent to v1, s ̸= 2. If we
add the edge {v1, vs}, we obtain a cycle v1, . . . , vs, v1, and
a path vs, . . . , vr. Now, if we remove the edge {vs−1, vs},
we obtain a new Hamiltonian path H ′ = (H \{vs−1, vs})∪
{v1, vs}. This operation is called a backbite move. See Figure 1.11.

2 Reconfiguration algorithm for cycles and canonical forms

Definitions. Denote by Gs the induced subgraph of G on all the vertices with distance s or greater
from the boundary of G. Denote by Rs the rectangular induced subgraph on vertices of G with distance
s from the boundary. Then Rs is the boundary of Gs and the edges of R0 are the boundary edges of G.

The main result stated in the Introduction is an immediate consequence of the slightly more general
theorem below. Its proof takes up the remainder of the paper.

Theorem 2.1. Let G be an m × n grid graph with n ≥ m. Let H and K be two Hamiltonian cycles
or Hamiltonian e-cycles of G with the same edge e. Then there is a sequence of at most n2m valid
double-switch moves that reconfigures H into K.

The 3 × n and 4 × n cases were done by Nishat in [10], so from here on, we will assume that m,n ≥ 5,
and that m and n are not both odd. First we will describe canonical forms for Hamiltonian cycles and
e-cycles. Then we show that we can reconfigure any two canonical forms into one another. Then we
show that any Hamiltonian cycle (e-cycle) can be reconfigured into a canonical form. Observing that
double-switch moves are invertible completes the proof. That is X 7→ Y followed by Y 7→ X results in
no net change. More specifically, suppose we want to reconfigure a Hamiltonian cycle (e-cycle) H into a
Hamiltonian cycle (e-cycle) K. Let µ1, ..., µk and ν1, ..., νs be the sequences of moves that reconfigure H
and K into the canonical forms Hcan and Kcan, respectively. Then νs, νs−1, ..., ν1 reconfigures Kcan into
K. Let η1, ..., ηt be the sequence of moves that reconfigures Hcan into Kcan. Then the sequence of moves
µ1, ..., µk, η1, ..., ηt, νs, νs−1, ..., ν1 reconfigures H into K.

Description of canonical forms. We shall write Hcan(m,n) to denote the set of canonical forms of
Hamiltonian cycles and e-cycles on an m× n grid graph. Then H ∈ Hcan(m,n) if and only if H can be
constructed by the “Canonical Form Builder” algorithm described below.

Let t =
⌊
min(m,n)−4

2

⌋
. Let k1 = |m− n|+ 2 and k2 = |m− n|+ 3. If min(m,n) is even, let D be the

Hamiltonian cycle of the 2× k1 grid graph Gt+1. If min(m,n) is odd, let D be any Hamiltonian cycle of
the 3× k2 grid graph Gt+1. Let U = D ∪

⋃t
i=0 Ri.
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Fig. 2.1(a). U with min(m,n) even.
D1 in dashed yellow.

X0

X1

X2

X3

Fig. 2.1(b),
A canonical form from U.

X0

X1

X2

X3

Fig. 2.2(a). U with
min(m,n) odd.

X0

X1

Fig. 2.2(b). A canonical
form from U . D2(H) in

dashed yellow.

X0

X1

We define (Ri, Ri+1) to be the set of all the boxes of G adjacent to both Ri and Ri+1. Now we can state
the Canonical Form Builder algorithm (CFB) that takes as inputs m and n and outputs an element of
Hcan(m,n).

Step 1. Set i = 0. Switch one of the 2(m− 3) + 2(n− 3) switchable boxes of (R0, R1) of the graph U . This
switch removes some edge, say e1, from E(R1). If t = 0, stop. If t > 0, go to Step 2.

Step 2. Increase i by 1. Switch one of the switchable boxes of (Ri, Ri+1) \ ei.

Step 3. If i ≤ t, go to Step 2. If i = t+ 1, then stop.

We have arrived at a canonical form H. Record the switched boxes X0, ..., Xt in a list List(H). So
List(H) = (X0, ..., Xt) consists of the faces of G that were chosen to be switched to make U into a
canonical form, listed in order.

We observe that the CFB algorithm above works just as well for e-cycles if we remove e from U .

Reconfiguration between canonical forms. Let H,K ∈ Hcan(m,n). Let List(H) = (X0, ..., Xt) and
List(K) = (Y0, ..., Yt) be the switched boxes of H and K respectively. We will reconfigure H into K, so
the algorithm will run on H.

Let D(H) = H ∩Gt+1 and note that D(H) is an e-cycle of Gt+1. Using the result of Nishat in [10],
D(H) can be reconfigured into D(K) by a sequence of valid moves.

Step 1. Set i = 0. If t = 0, go to Step 3. If t > 0, go to Step 2.

Step 2. If Yi is switchable after switching Xi, switch both Xi and Yi.

If Yi is not switchable after switching Xi, switch Xi+1 and any other switchable box in (Ri+1, Ri+2),
say X ′i+1, such that Xi+1 7→ X ′i+1 is valid. We remark that the only the only case where Yi would
not be switchable after switching Xi occurs when Yi is adjacent to Xi+1. Note that there are many
possible choices for X ′i+1. Now Yi is switchable. Switch both Xi and Yi. Update List(H) by setting
the (i+ 1)st slot to X ′i+1. Increase i by 1.

Step 3. If i < t, go to Step 2.

If i = t and min(m,n) is even, switch Xi and Yi, and then stop.

If i = t and min(m,n) is odd, go to Step 3.1.

Step 3.1. Switch Xt and any one of the four switchable boxes, say X ′t, located on the short sides of D. Run
NRI’s algorithm to reconfigure D(H) into D(K). Switch X ′t and Yt. Stop.

Reconfiguration of a cycle into a canonical form (RtCF). The RtCF algorithm takes as input a
Hamiltonian e-cycle and outputs a canonical e-cycle. We will need the following proposition:

Proposition 2.2. Let H ∈ H.
(a) If H has more than one large cookie, then there is a cascade of length at most two that reduces

the number of large cookies of H by one. This is the ManyLargeCookies (MLC) algorithm.
(b) If H has exactly one large cookie and at least one small cookie, then there is a cascade of length

at most 1
2 max(m,n) + min(m,n) + 2 that reduces the number of small cookies of H by one and

such that it does not increase the number of large cookies. This is the OneLargeCookie (1LC)
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algorithm.

The proof for Proposition 2.2 will be given in Section 3.

Now we can describe the RtCF algorithm. Without loss of generality, assume H ∈ H is a Hamiltonian
e-cycle of G. Suppose H = H0 has c1;large large cookies and c1;small small cookies. We run MLC c1;large−1
times and then run 1LC c1;small times to reconfigure H0 into H ′0, where H ′0 has exactly one (necessarily
large) cookie C1. We define H1 = (G1 ∩H ′0) and observe that H1 is a Hamiltonian e-cycle of G1. This is
the first iteration of (RtCF). Now we describe the jth iteration. We run MLC cj;large − 1 times and then
run 1LC cj;small times to reconfigure Hj−1 into H ′j−1, where H ′j−1 has exactly one (necessarily large)
cookie Cj . The RtCF algorithm stops when j = t. We give a summary of the algorithm below.

Step 1. Set j = 0. Run MLC c1;large times and then 1LC c1;small times on H0 to reconfigure H0 into H ′0.

Step 2. Increase j by 1. Set Hj = Gj ∩H ′j−1 and note that Hj is a Hamiltonian e-cycle in Gj . Run MLC
cj+1;large times and then 1LC cj+1;small times on Hj to reconfigure into Hj into H ′j .

Step 3. If j < t, go to Step 2. If j = t, stop.

Proof of the RtCF algorithm. Let Nj be the neck of the only cookie Cj of H ′j−1 in Gj−1. Define
e1(Nj) = Nj ∩ Rj−1, e2(Nj) = Nj ∩ Rj and {e3(Nj), e4(Nj)} = Nj ∩H ′j−1. We observe that when the
RtCF algorithm stops, we have reconfigured H into

Hc = D(H) ∪
t⋃

j=0

(
Rj ∪ e3(Nj+1) ∪ e4(Nj+1)

)
\ (e1(Nj+1) ∪ e2(Nj+1).

Now we can see that Hc is an element of Hcan(m,n) by setting Xj−1 = Nj for j = 1, 2, ..., t + 1 and
running CFB. See Figure 2.3 on page 12 for an illustration of the RtCF algorithm on a 10× 10 grid.

Bound for Theorem 2.1. Recall that n ≥ m. Note that it takes at most 2m moves to reconfigure
canonical forms into one another. Now we count the moves required for RtCF to terminate. Observe that
for each j ∈ {0, . . . , t− 1}, Hj has at most 2

(
n−2j

2 + m−2j
2

)
= n+m− 4j cookies. This is the number of

iterations of MLC or 1LC required for each j. It will follow from the proofs in Sections 3 and 4 that each
application of MLC or 1LC in Hj requires at most 1

2n+m− 3j + 3 moves. So, RtCF requires at most:

⌊(m−2)/2⌋∑
j=1

(n+m− 4j)
(n
2
+m− 3j + 2

)

=

⌊(m−2)/2⌋∑
j=1

(
12j2 + (−5n− 7m− 8)j +

n2

2
+

3nm

2
+ 2n+m2 + 2m

)
≤ 1

2 (m
3 − 3m2 + 2m) + (−5n− 7m− 8)

(m2

8
− m

4

)
+ 1

2

(n2

2
+

3nm

2
+ 2n+m2 + 2m

)
(m− 2)

=
n2m

4
+

nm2

8
+

3nm

4
+

m3

8
− 3m2

4
− n2

2
+m− 2n

=
n2m

2
+

nm

4

(
3− 3m

n
− 2n

m

)
+m− 2n.

Let x = m
n . Then 3m

n + 2n
m = 3x+ 2

x . Using calculus, we find that it attains a minimum of 2
√
6 at x =

√
6
3 .

Then
(
3− 3m

n − 2n
m

)
can be at most 3−2

√
6 ≤ −1. It follows that RtCF requires at most n2m

2 − nm
4 +m−2n

to terminate. For a complete reconfiguration we need to run RtCF once for each e-cycle and reconfigure

the resulting canonical forms. So, we need at most 2
(
n2m
2 −nm

4 +m−2n
)
+m = n2m−nm

2 −4n+3m < n2m
moves for a complete reconfiguration. We remark that this is a worst case scenario and conjecture that
the typical number of moves required is of the order of n2.
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Initial configuration First move Second move

Third move Fourth move Fifth move

Sixth move Seventh move Eighth move

Ninth move

Figure 2.3. An illustration of RtCF on a 10× 10 grid graph. Pink squares indicate boxes that have just
been switched; green squares indicate boxes that we’ll be switched next. The first three moves are in the
j = 0 iteration of RtCF, the next three moves are in the j = 1 iteration, and the last three moves are in
the j = 2 iteration. No moves are required for the j = 3 iteration, since H3 has exactly one large cookie.
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3 Existence of the MLC and 1LC Algorithms

• Recall that RtCF algorithm in Section 2 presupposes the existence of the moves required for its ex-
ecution. The proofs of existence were deferred to the ManyLargeCookies (MLC) and OneLargeCookie
(1LC) algorithms, which we prove in Sections 3.1 and 3.2, respectively. These algorithms ensure that
whenever RtCF requires a particular move, either the move is immediately available, or else there exists
a cascade after which the required move becomes available. Importantly, such cascades do not undo the
progress already made: RtCF does not regress. The restrictions in the definition for cascades at the end
of Section 1.4 were designed precisely for this reason.

Consider an iteration of RtCF on rectangle Gi with Hamiltonian e-cycle Hi. At this stage, Hi either
has more than one large cookie, exactly one large cookie with at least one small cookie, or exactly one
large cookie with no small cookies. In the last case, Hi is already in the desired form for this iteration,
and RtCF proceeds to Gi+1. The MLC algorithm handles the first case by finding the required cascades
to collect large cookies when multiple large cookies are present. The 1LC algorithm handles the second
case by finding the required cascades to collect small cookies when exactly one large cookie remains.

Why do we need two separate algorithms for what appears to be the same task? This is because
small cookies can be harder to collect than large ones. A second large cookie J always has a switchable
neck NJ ; to collect J we need only find another switchable box X such that NJ 7→ X is a valid move,
or a cascade delivering such a switchable box. In Section 3.1, we show that it takes at most two moves
to accomplish this (Proposition 3.8). Small cookies, by contrast, consist of a single non-switchable box.
To collect a small cookie, either the box Y adjacent to it in (Ri, Ri+1) must be switchable, or we must
find a cascade that makes Y switchable. The latter task can require much longer cascades, and it is more
difficult to deal with. It requires Lemma 3.7, all of Section 3.2, most of Section 4, and several results from
Chapter 1. Furthermore, the assumption that exactly one large cookie is present significantly shortens
and simplifies the proofs of Proposition 3.10 and Lemmas 3.11–3.15 in Section 3.2, by precluding the
possibility of several tedious cases. •

3.1 Existence of the MLC Algorithm

WX Y

Fig. 3.1. The looping
H-path of W shaded orange.

Definitions. Let G be an m×n grid graph, let H be a Hamiltonian cycle of G,
and let W be a switchable box in H. Let X and Y be the boxes adjacent to W
that are not its H-neighbours, and assume that X and Y belong to the same H-
component. By Corollary 1.4, the H-path P (X,Y ) is unique. We call P (X,Y )
the looping H-path of W . See Figure 3.1 for an illustration of the looping H-path
of a switchable box W in a Hamiltonian cycle of a 6× 6 grid graph.

Outline of the MLC algorithm. Let H be a Hamiltonian cycle of an m×n grid graph G with multiple
large cookies. We first identify a large cookie J with switchable neck NJ . Consider what happens if NJ

is switched: this would produce two cycles, H1 and H2. First we observe that there must be some edge
{v1, v2} in R2 (recall the nested rectangles from Chapter 2) with v1 ∈ H1 and v2 ∈ H2 (Lemma 3.7).
The proximity of {v1, v2} to the boundary constrains the possible configurations of edges in its vicinity.
We analyze those configurations (Lemma 3.5) and show that either an (H1, H2)-port already exists near
{v1, v2}, or a single-move cascade on the original H yields a Hamiltonian cycle H ′ where such a port
exists after switching NJ .

Proposition 3.1. Let G be an m × n grid graph, let H be a Hamiltonian cycle of G, and let P (X,Y )
be the looping H-path of a switchable box W . Let H ′ be the graph consisting of the cycles H1 and H2

obtained after switching W . Then a box Z of G belongs to the H ′-cycle P (X,Y ),W,X if and only if Z
is incident on a vertex of H1 and on a vertex of H2.

vy−1

vy

vx+1

vx

Z

WX Y

Fig. 3.2.
−→
K1 in blue,

−→
K2 in orange.

Proof. Orient H as a directed cycle H = v1, ..., vr, v1. By Lemma
1.15, W is anti-parallel. Let the edges of W in H be {vx, vx+1} and
{vy−1, vy}. For definiteness, assume that X is adjacent to {vx, vx+1},
Y is adjacent to {vy−1, vy} and that W is on the right of {vx, vx+1}.
Then we have that Φ((vx, vx+1), left) = X and Φ((vy−1, vy), left) = Y .

Define
−→
K1 and

−→
K2 to be the subtrails

−→
K((vx, vx+1), (vy−1, vy)) and

−→
K((vy−1, vy), (vx, vx+1)) of

−→
KH , respectively. By Lemma 1.16 (i),

switching W splits H into two cycles H1 and H2, with V (H1) =

V (
−→
K1) \ {vx, vy} and V (H2) = V (

−→
K2) \ {vx+1, vy−1}.
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Proof of ( =⇒ ). Since P (X,Y ) is unique, any H-walk of boxes between X and Y contains P (X,Y ). In

particular, Φ(
−→
K1, left) contains P (X,Y ) and Φ(

−→
K2, left) contains P (X,Y ). Let Z be a box of P (X,Y ).

Then Z is added to Φ(
−→
K1, left) by an edge of

−→
K1 and Z is added to Φ(

−→
K2, left) by an edge of

−→
K2.

By definition of FTW, Z is incident on a vertex of
−→
K1 and a vertex of

−→
K2. Since for i ∈ {1, 2},

V (
−→
K i) ⊃ V (Hi), we have that Z is incident on a vertex of H1 and a vertex of H2. Lastly, note that W

is incident on vx+1 ∈ H1 and vx ∈ H2. End of proof for ( =⇒ ).

Proof of ( ⇐= ). Suppose we switch W and obtain the graph H ′ consisting of the cycles H1 and H2.
Observe that P (X,Y ),W,X is the only H ′-cycle in G. We will say that a box Z of G satisfies (∗) if
Z is incident on a vertex in H1 and H2. We will show that if a box Z of G satisfies (∗) then it must
belong to an H ′-cycle of boxes that satisfy (∗). Then, since there is only one H ′-cycle in G, Z = W or
Z ∈ P (X,Y ).

Let Z be a box in G that satisfies (∗). For definiteness, assume that Z = R(k, l). We will show that
Z has exactly two neighbours in G that satisfy (∗) and that Z is H ′-adjacent to those two neighbours.
Since Z satisfies (∗), either Z has two vertices in H1 and two vertices in H2 or Z has one vertex in one
of H1 and H2 and three vertices in the other.

+1

ℓ

k +1

Z

Fig. 3.3.

CASE 1: Z has two vertices in H1 and two vertices in H2. First we will check
that the pair of vertices belonging to Hi, i ∈ {1, 2} must be adjacent in Z. Assume
for contradiction that v(k, l) and v(k + 1, l + 1) belong to H1 and v(k + 1, l) and
v(k, l + 1) belong to H2. See Figure 3.3. Let Q be the closed polygon consisting of
the subpath P (v(k, l), v(k + 1, l+ 1)) of H1 and the segment [v(k, l), v(k + 1, l+ 1)].
Then, by Theorem 1.1, v(k+1, l) and v(k, l+1) are on different sides of H1. It follows that the subpath
P (v(k + 1, l), v(k, l + 1)) of H2 intersects Q. Since P (v(k + 1, l), v(k, l + 1)) does not intersect Q at the
segment [v(k, l), v(k + 1, l+ 1)], it must intersect Q at some vertex in P (v(k, l), v(k + 1, l+ 1)). But this
contradicts that H1 and H2 are disjoint. It follows that the pair of vertices belonging to Hi, i ∈ {1, 2}
must be adjacent in Z.

+1

ℓ

-1 k +1

Z

Fig. 3.4.

For definiteness assume that v(k, l) and v(k + 1, l) belong to H1 and that v(k +
1, l + 1) and v(k, l + 1) belong to H2. See Figure 3.4. Since H1 and H2 are
disjoint e(k; l, l + 1) /∈ H ′ and e(k + 1; l, l + 1) /∈ H ′ so Z + (−1, 0) and Z + (1, 0)
are H ′-adjacent to Z. Since v(k, l) ∈ H1 ∩ V (Z + (−1, 0)) and v(k, l + 1) ∈
H2 ∩ V (Z + (−1, 0)), Z + (−1, 0) satisfies (∗). Similarly, Z + (1, 0) satisfies (∗). It
remains to check that Z + (0, 1) and Z + (0,−1) do not satisfy (∗).

Assume for contradiction that one of Z+(0, 1) and Z+(0,−1) satisfies (∗). By symmetry we may assume
WLOG that Z + (0, 1) satisfies (∗). Then at least one of v(k, l+2) and v(k+1, l+2) belongs to H1. By
symmetry we may assume WLOG that v(k, l + 2) ∈ H1. It follows that e(k; l + 1, l + 2) /∈ H ′ and that
v(k − 1, l + 1) ∈ H2. Then we must have e(k − 1, k; l + 1) ∈ H2 and e(k, k + 1; l + 1) ∈ H2. But then,
by Corollary 1.2, one of v(k, l) and v(k, l + 2) belongs inside the region bounded by H2 and the other
belongs outside it. It follows that the subpath P (v(k, l), v(k, l + 2)) of H1 intersects H2, contradicting
that H1 and H2 are disjoint. End of Case 1.

CASE 2: Z has one vertex in one of H1 and H2 and three vertices in the other. For definiteness assume
that v(k, l), v(k, l + 1) and v(k + 1, l + 1) belong to H1 and that v(k + 1, l) belongs to H2. Then
e(k, k+ 1; l) /∈ H ′ and e(k+ 1; l, l+ 1) /∈ H ′, so Z + (1, 0) and Z + (0,−1) are H ′-neighbours of Z. Since
v(k, l) ∈ H1 ∩ V (Z + (0,−1)) and v(k + 1, l) ∈ H2 ∩ V (Z + (0,−1)), Z + (0,−1) satisfies (∗). Similarly,
Z + (1, 0) satisfies (∗). It remains to check that Z + (0, 1) and Z + (0,−1) do not satisfy (∗).

Assume for contradiction that one of Z + (−1, 0) and Z + (0, 1) satisfies (∗). By symmetry we may
assume WLOG that Z+(0, 1) satisfies (∗). Then one of v(k, l+2) and v(k+1, l+2) belongs to H2. Note
that if v(k+1, l+2) ∈ H2 we run into the same contradiction as in Case 1, so we only need to check the
case where v(k, l + 2) ∈ H2. Now, either e(k, k + 1; l + 1) ∈ H1, or e(k, k + 1; l + 1) /∈ H ′.

+1

ℓ

-1

k +1

Z

Fig. 3.5(a).

+1

ℓ

-1

k +1

Z

Fig. 3.5(b).

CASE 2.1: e(k, k + 1; l + 1) ∈ H1. Then the segment [v(k, l + 2), v(k +
1, l)] intersects H1 at the point (k 1

2 , l + 1). by Corollary 1.1, the vertices
e(k, l+2) and v(k+1, l) are on different sides of H1, and we run into the
same contradiction as in Case 1 again. End of Case 2.1. See Figure 3.5(a)

CASE 2.2: e(k, k + 1; l + 1) /∈ H1. Consider the polygon Q consisting of
the segment [v(k, l+2), v(k+1, l)] and the subpath P (v(k, l+2), v(k+1, l))
of H2. By Corollary 1.1 the vertices v(k, l + 1) and v(k + 1, l + 1) are on different sides of Q. BY JCT
the subpath P (v(k, l+ 1), v(k+ 1, l+ 1)) of H1 intersects Q. Since P (v(k, l+ 1), v(k+ 1, l+ 1)) does not
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intersect Q at the segment [v(k, l+2), v(k+1, l)], it must do so at some vertex of P (v(k, l+2), v(k+1, l)),
contradicting that H1 and H2 are disjoint. See Figure 3.5(b). End of Case 2.2. End of Case 2. End of
proof for ( ⇐= ). □

Corollary 3.2 (i). Let G be an m× n grid graph, let H be a Hamiltonian cycle of G, and let W be a
switchable box in H. Let H ′ be the graph consisting of the cycles H1 and H2 obtained after switching
W . Let a, b and c be colinear vertices such that b is adjacent to a and c. Then, for i ∈ {1, 2}, If a and c
belong to Hi, so must b. See Figure 3.4. □

Corollary 3.2 (ii). Let G be an m× n grid graph, let H be a Hamiltonian cycle of G, and let W be a
switchable box in H. Let H ′ be the graph consisting of the cycles H1 and H2 obtained after switching
W . Let Z be a box on vertices a, b, c, and d such that a and b belong to H1, and c and d belong to H2.
Then a is adjacent to b, and c is adjacent to d. See Figure 3.3. □

vy−1

vy

vx+1

vx

v1

vr

vs

vs+1
vt

vt+1

Z

WX Y

Fig. 3.6. P1 in blue, P2 in orange.

Proposition 3.3. LetH be a Hamiltonian cycle of anm×n grid graph
G, let W be a switchable box in H and let P (X,Y ) be the looping
H-path of W . If P (X,Y ) has a switchable box Z, then Z 7→ W is a
valid move.

Proof. Let H = v1, v2..., vr, v1. Let W , P (X,Y ), {vx, vx+1} and
{vy−1, vy} be as in Proposition 3.1. By Lemma 1.15, W is anti-parallel.
Let P1 = P (vx, vy) and let P2 = P (vy, vx). By Proposition 3.1, every
box of P (X,Y ) is incident on a vertex of P1 and a vertex of P2. Let

Z be a switchable box of P (X,Y ). Let (vs, vs+1) and
(vt, vt+1) be the edges of Z in H. For definiteness, assume s+1 < t. Proposition 3.1 implies that exactly
one of (vs, vs+1) and (vt, vt+1) is in P1 and the other is in P2. WLOG assume that (vs, vs+1) is in P1 and
that (vt, vt+1) is in P2. Then we can partition the edges of H as follows: P (v1, vs), (vs, vs+1), P (vs+1, vt),
(vt, vt+1), P (vt+1, vr), {vr, v1} where 1 < x < s < y < t < r.

We we check that Z 7→ W is a valid move. After removing the edges (vs, vs+1) and (vt, vt+1) we are
left with two paths: P (vt+1, vs) and P (vs+1, vt). Note that adding the edge {vs, vt+1} gives a cycle H1

consisting of the path P (vs, vt+1) and the edge {vs, vt+1}. and adding the edge {vs+1, vt} gives a cycle H2

consisting of the path P (vs+1, vt) and the edge {vs+1, vt}. Now 1 < x < s implies that (vx, vx+1) ∈ H1

and s < y < t implies that (vy−1, vy) ∈ H2. It follows that W is now an (H1, H2)-port. By Lemma 1.16
(ii), Z 7→ W is a valid move. □

Observation 3.4. Let X 7→ Y be a valid move. If X ∈ ext(H) and Y ∈ int(H) then:
(i) X 7→ Y increases the total number of cookies if and only if X ∈ G1 and Y ∈ G0 \G1.
(ii) X 7→ Y increases the total number of large cookies, leaving the total number of cookies unchanged,

if and only if X ∈ G1, Y ∈ G1 \G2 and Y is adjacent to a small cookie.
(iii) X 7→ Y decreases the total number of cookies if and only if X ∈ G0 \G1 and Y ∈ G1.

Lemma 3.5. Let H be a Hamiltonian cycle of an m × n grid graph G and let Z be a switchable box
in Z ∈ ext(H) ∩ ((G0 \ G1) ∪ G3). Assume that switching Z splits H into the cycles H1 and H2 that
are such that there is v1 ∈ H1 ∩ R2 and v2 ∈ H2 ∩ R2 with v1 adjacent to v2. Then either Z 7→ Z ′ is a
cascade, or there is a cascade µ,Z 7→ Z ′ (of length two), with Z 7→ Z ′ nontrivial in either case.

-1

ℓ

+1

1 2 3

Fig. 3.7 (a).

-1

ℓ

+1

1 2 3

Fig. 3.7 (b). Case 1.

In figures 3.7 through 3.11, vertices and edges of H1 and H2

are in blue and orange, respectively, and boxes of int(H) are
shaded in green.

Proof. We will use the assumption that Z ∈ (G0 \ G1) ∪ G3

repeatedly and implicitly throughout the proof. Switch Z
to obtain H ′ consisting of the disjoint cycles H1 and H2.
Note that now, if a vertex belongs to Hi for i ∈ {1, 2}, both edges incident on it must also belong
to Hi. For definiteness, let v1 ∈ H1 ∩ R2 be the vertex v(2, l) for some l ∈ {2, ..., n − 3} and let
v2 = v(2, l − 1) ∈ H2 ∩R2. Then e(2; l − 1, l) /∈ H, and by Corollary 3.2 (i), v(2, l + 1) ∈ H1 as well. By
Proposition 3.1, R(1, l − 1) and R(2, l − 1) belong to int(H). Now, either v(1, l) ∈ H1, or v(1, l) ∈ H2.
See Figure 3.1.

CASE 1: v(1, l) ∈ H2. Then e(1, 2; l) /∈ H. Corollary 3.2(i), v(3, l) ∈ H1. It follows that e(2; l, l+1) ∈ H ′

and e(2, 3; l) ∈ H ′. Now, by Corollary 3.2 (ii), v(1, l − 1) ∈ H2 and by Corollary 3.2 (i), v(0, l) ∈ H2. At
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this point we must either have, e(1; l, l + 1) ∈ H ′ or e(1; l, l + 1) /∈ H ′.

-1

ℓ

+1
1 2 3

Fig. 3.8 (a). Case 1.1

-1

ℓ

+1

1 2 3

Fig. 3.8 (b). Case 1.2

CASE 1.1: e(1; l, l + 1) /∈ H ′. Then e(1; l − 1, l) ∈ H2 and
e(0, 1; l) ∈ H2. Since Z ∈ ext(H), by Proposition 3.1, R(1, l−
1) ∈ int(H). Then R(0, l− 1) must be a small cookie of G, so
we must have that e(0, 1; l− 1) ∈ H2 and that e(1, 2; l− 1) /∈
H ′. It follows that e(2, 3; l − 1) ∈ H ′ and e(3; l − 1, l) /∈ H ′.
Now note that R(2, l − 1) is an (H1, H2)-port. Then, by
Lemma 1.16 (ii) and Observation 3.4, Z 7→ R(2, l−1) is valid
move that does not create new cookies. So, Z 7→ R(2, l − 1) is the cascade we seek. End of Case 1.1

CASE 1.2: e(1; l, l+1) ∈ H ′. Proposition 3.1, and the assumption that Z ∈ ext(H) imply that R(1, l) ∈
int(H). Then, Lemma 1.14 implies that R(0, l) is a small cookie of G. Note that if e(2, 3; l−1) ∈ H ′, then
we’re back to Case 1.1, so we may assume that e(2, 3; l−1) /∈ H ′. It follows that e(1, 2; l−1) ∈ H2 and that
R(0, l − 1) is not a small cookie of H. Then, by Observation 3.4 and Proposition 3.3, R(0, l) 7→ R(1, l),
Z 7→ R(1, l − 1) is the cascade we seek. End of Case 1.2. End of Case 1.
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Fig. 3.9 (a). Case 2.
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1 2 3

Fig. 3.9 (b). Case 2.1.

CASE 2: v(1, l) ∈ H1. Then e(2, 3; l) ∈ H1 or e(2, 3; l) /∈ H ′.

CASE 2.1: e(2, 3; l) ∈ H1. Note that if e(2, 3; l − 1) ∈ H2,
then we’re back to essentially the same scenario as Case 1.1,
so we may assume that e(2, 3; l−1) /∈ H2. Then e(1, 2; l−1) ∈
H2. It follows that e(1; l − 1, l) /∈ H ′ and so R(0, l − 1)
is not a small cookie of H. Now, either e(1, 2; l) ∈ H1, or
e(1, 2; l) /∈ H ′.
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Fig. 3.10 (a). Case 2.1(a).
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Fig. 3.10 (b). Case 2.1(b).

CASE 2.1 (a): e(1, 2; l) ∈ H1. By Observation 3.4 and
Proposition 3.3, Z 7→ R(1, l − 1) is the cascade we seek.
End of Case 2.1(a).

CASE 2.1 (b): e(1, 2; l) /∈ H ′. Then we have that e(2; l, l +
1) ∈ H1, that e(1; l, l + 1) ∈ H1 and that R(1, l) ∈ int(H).
It follows that R(0, l) ∈ ext(H), so R(0, l) must be a small
cookie. Then, after R(0, l) 7→ R(1, l), we are back to Case
2.1 (a). End of Case 2.1(b). End of Case 2.1.
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+1

1 2 3

Fig. 3.11. Case 2.2.

CASE 2.2: e(2, 3; l) /∈ H ′. Then we have that e(1, 2; l) ∈ H1. Note that if e(1, 2; l−
1) ∈ H2, then we’re back to Case 2.1, so we may assume that e(1, 2; l− 1) /∈ H ′. It
follows that e(2; l− 2, l− 1) ∈ H2. Note that if e(1; l− 1, l) ∈ H1, then R(0, l− 1) ∈
ext(H) and R(0, l) ∈ ext(H), contradicting Lemma 1.14, so we may assume that
e(1; l− 1, l) /∈ H ′. Then we must have that e(1; l− 2, l− 1) ∈ H ′. This implies that
R(0, l − 2) is a small cookie of H. Then after R(0, l − 2) 7→ R(1, l − 2), we’re back
to Case 2.1(a). End of Case 2.2. End of Case 2. □.

Observation 3.6. Let H be a Hamiltonian cycle of an m× n grid graph G, with m,n ≥ 5 and let J be
a large cookie of G. Then J ∩R2 ̸= ∅.

Lemma 3.7. Let H be a Hamiltonian cycle of an m× n grid graph G, with m,n ≥ 5 and assume that
G has at least two large cookies J1 and J2. Then switching the neck NJ1 of J1 splits H into two cycles
H1 and H2 such that there is v1 ∈ H1 ∩R2 and v2 ∈ H2 ∩R2 with v1 adjacent to v2.

Proof. Orient H. Let {vx, vy} be the boundary edge of the neck NJ1
of J1. Define

−→
K1 and

−→
K2 to be the

subtrails
−→
K((vx, vx+1), (vy−1, vy)) and

−→
K((vy, vy+1), (vx−1, vx)) of

−→
KH , respectively. By Lemma 1.16 (i),

switching NJ1
gives two cycles H1 and H2, with V (H1) = V (

−→
K1 \ {(vx, vy)}) and V (H2) = V (

−→
K2). By

Lemma 1.13, V (J1) = V (
−→
K1). By Observation 3.6, V (J1) ∩R2 ̸= ∅. Then V (H1) ∩R2 ̸= ∅.

Since V (J1) = V (
−→
K1), we have that V (J2) ⊆ V (

−→
K2) = V (H2). By Observation 3.6, V (J2) ∩R2 ̸= ∅.

It follows that V (H2) ∩R2 ̸= ∅.
We have shown that V (H1) = R2 ̸= ∅ and that V (H2) ∩ R2 ̸= ∅. It remains to check there is

v1 ∈ H1 ∩R2 and v2 ∈ H2 ∩R2 with v1 adjacent to v2. v1 ∈ H1 ∩R2 and R2 = w1, ..., ws, with v1 = w1.
Sweep R2 starting at w1. If there is i ∈ {1, ..., s − 2} such that vi ∈ H1 and vi+1 ∈ H2, we are done. If
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there is no such i then R2 ∪H1, contradicting that R2 ∪H2 ̸= ∅. □

Proposition 3.8. (MLC Algorithm.) Let H be a Hamiltonian cycle of an m × n grid graph G.
Assume that G has more than one large cookie. Then there is a cascade of length at most two that
reduces the number of large cookies of G by one.

Proof. Let J be a large cookie of G with neck NJ . Switching NJ splits H into the cycles H1 and H2.
By Lemma 3.7 there is v1 ∈ H1 ∩ R2 and v2 ∈ H2 ∩ R2 with v1 adjacent to v2. By Lemma 3.5 there is
a cascade of length at most two, whose last move is Nj 7→ N ′J with NJ ̸= N ′J . By Observation 3.4, this
cascade decreases the number of large cookies of G by one. □

3.2 Existence of the 1LC Algorithm

ℓ

k

Fig. 3.12(a).
A northern leaf.

ℓ

k

Fig. 3.12 (c). A0-type.

ℓ

k

Fig. 3.12 (b). A-type.

ℓ

k

Fig. 3.12 (d). A1-type.

-1

ℓ

+1

+2

+3

k +1

Fig. 3.12(e). Northern:
leaf followed by a
northern A1 type.

Definitions. Let G be an m × n grid graph
and H be a Hamiltonian cycle of G. We call a
subpath of H on the edges e(k; l, l+1), e(k, k+
1; l + 1) and e(k + 1; l, l + 1) a northern leaf.
We will often say that R(k, l) is a northern leaf
to mean that e(k; l, l + 1), e(k, k + 1; l + 1) and
e(k+1; l, l+1) belong to H. Southern, eastern
and western leaves are defined analogously.

We call the subgraph ofH on the edges e(k−
1, k; l), e(k; l, l+ 1), e(k+ 1, k+ 2; l), and e(k+
1; l, l + 1) a northern A-type. Suppose H has
a northern A-type. We call the subgraph A ∪
e(k, k + 1; l + 1) of H a northern A0-type, and
we call the subgraph A∪e(k; l+1, l+2)∪e(k+
1; l+1, l+2) of H a northern A1-type. We make

analogous definitions for eastern, southern and western A-types. See Figures 3.12.
Let R(k, l − 1) be a northern leaf. If H has a northern A-type on e(k − 1, k; l + 1), e(k; l + 1, l + 2)

and e(k+1, k+2; l+1), e(k+1; l+1, l+2) then we say that A-type follows the northern leaf R(k, l− 1)
northward. We call the switchable box R(k, l + 1) the switchable middle-box of the A1-type. Analogous
definitions apply for other compass directions.
Let A be a northern A0-type in H on the edges e(k − 1, k; 0), e(k; 0, 1), e(k, k + 1, 1), e(k + 1; 0, 1),
e(k + 1, k + 2; 0) and let j ∈

{
1, 2, ..

⌊
n
2

⌋}
. We define a northern j-stack of A0’s starting at A to be a

subgraph stack(j;A0) of H, where stack(j;A0) =
⋃j−1

i=0

(
A + (0, 2i)

)
. If j =

⌊
n
2

⌋
, we call the j-stack a

full j-stack of A0’s. We note that j is the number of A0’s in stack(j;A0). Eastern, southern, and western
j-stacks are defined analogously.

We denote the set of northern and southern small cookies by SmallCookies{N,S} and the set of
eastern and western small cookies by SmallCookies{E,W}. Assume that C ∈ SmallCookies{N,S}
is an easternmost or westernmost southern or northern small cookie. Then we call C and outermost
small cookie in SmallCookies{N,S}. Outermost small cookies in SmallCookies{E,W} are defined
analogously.

Let R(k, l) be a northern leaf. We say that the cascade µ1, ..., µr collects R(k, l), if µr is the move
Z 7→ R(k, l). Note that, since R(k, l) is not switchable, Z must be a switchable box adjacent to R(k, l).

1

2

3

4
k +1 +2

Fig. 3.13.

Given a small cookie C, we want to show that there is a cascade that collects C. For
definiteness, assume that C is the northern small cookie R(k, 0). If e(k, k + 1; 2) ∈ H,
then C+(0, 1) 7→ C is the cascade we seek, so we only need to consider the case where
e(k, k + 1; 2) /∈ H. Then we must have e(k − 1, k; 2) ∈ H, e(k + 1, k + 2; 2) ∈ H,
e(k; 2, 3) ∈ H and e(k+1; 2, 3) ∈ H. Note that if e(k− 1, k; 3) ∈ H, then C +(0, 2) 7→
C + (−1, 2) followed by C + (0, 1) 7→ C is the cascade we seek, so we consider the case
where e(k − 1, k; 3) /∈ H and, by symmetry, where e(k + 1, k + 2; 3) /∈ H. Now, we
either have e(k; 3, 4) ∈ H and e(k + 1; 3, 4) ∈ H or e(k, k + 1; 3) ∈ H. That is, C is
followed northward by an A0-type or by an A1-type. See Figure 3.13. From this point onward, we will
omit the compass direction when it does not introduce ambiguity. We coalesce this paragraph into the
following lemma:

Proposition 3.10. (1LC Algorithm). Let G be an m × n grid graph, let H be a Hamiltonian cycle
of G. If H has exactly one large cookie and at least one small cookie, then there is a cascade of length
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at most 1
2 max(m,n) + min(m,n) + 2 moves that reduces the number of small cookies of H by one and

such that it does not increase the number of large cookies.

The proof of Proposition 3.10 requires the following two Lemmas.

Lemma 3.11. Let G be an m × n grid graph, let H be a Hamiltonian cycle of G, and let C ∈
SmallCookies{N,S} be an easternmost small cookie. Assume that G has only one large cookie. Then
there cannot be a full j-stack of A′0s starting at the A0-type that contains C.

Lemma 3.12. Let G be an m × n grid graph, let H be a Hamiltonian cycle of G, and let C ∈
SmallCookies{N,S} be an easternmost small cookie. Assume that there is a j-stack of A0 starting at
the A0-type containing C. Let L be the leaf in the top (jth) A0 of the stack. Assume that L is followed
by an A1-type and that G has only one large cookie. Then there is a cascade of at most min(m,n) + 3
moves that collects L.

Proof of Proposition 3.10. Since there is at least one small cookie, at least one of SmallCookies{N,S}
and SmallCookies{E,W} is nonempty. WLOG assume that SmallCookies{N,S} is nonempty. Let
C ∈ SmallCookies{N,S} be an easternmost small cookie. We will require the following two lemmas.

µs

Lj0−1

Lj0−2

L1

Fig. 3.14 (a).

µs+1

Lj0−2

L1

Fig. 3.14 (a).

µs+2

L1

Fig. 3.14 (c). Fig. 3.14 (d).

For definiteness assume that C is a small northern cookie on the southern boundary. Let Q(j) be the
statement “There is a j-stack of A0’s starting at the A0-type containing C”. Note that C is contained in an

A0-type, so Q(1) is true. By Lemma 3.11, there is a j0 ∈
{
2, 3, ...

⌊
n
2

⌋}
such that for each j ∈ {2.., j0−1},

Q(j) is true for each j < j0 but Q(j0) is not true.
For j ∈ {1.., j0−1} let Lj be the northern leaf of the jth A0-type in the stack. Note that L1 = C. Lemma
3.9 implies that Lj0−1 is either followed by an A1-type or there is a cascade that collects Lj0−1. If Lj0−1
is followed by an A1-type, then by Lemma 3.12, we can find a cascade that collects it, so we only need to
check the case in which there is a cascade µ1, ..., µs that collects Lj0−1. Note that µs must be the move
Lj0−1 + (1, 0) 7→ Lj0−1. Then µ1, ..., µs, Lj0−2 + (0, 1) 7→ Lj0−2, ..., L1 + (0, 1) 7→ L1 is a cascade that
collects C. See Figures 3.14 for an illustration with j0 − 1 = 3. Note that j ≤ n

2 , and that by Lemma
3.12, there are at most min(m,n) + 3 moves required to collect L. After that, we need at most another
j − 1 flips to collect C, so C can be collected after at most 1

2 max(m,n) + min(m,n) + 2 moves. See
Figure 3.14 for an illustration with j0 − 1 = 3. □

n-1

-2

k +1 +2

Fig 3.15(a). Case 1.1.

n-1

-2

k +1

Fig 3.15(b). Case 1.2.

It remains to prove Lemmas 3.11 and 3.12.

Proof of Lemma 3.11. Assume for contradiction that C is in a full
stack of A0’s starting at the A0 that contains C. For definiteness,
assume that C = R(k, 0) is a small northern cookie on the southern
boundary. First we check that m−1 > k+2. If m−1 = k+2, then
we must have e(k + 2; 0, 1) ∈ H and e(k + 2; 1, 2) ∈ H. But then
H misses v(k + 2, 3) (in green in Figure 3.15 (a)). The number j
of A0’s in the full stack is even or an odd so there are two cases
to check. Note that for each odd i ∈ {1, 2, ..., j}, the leaf of the ith
A0 belongs to ext(H) and for each even i ∈ {1, 2, ..., j}, the leaf of
the ith A0 belongs to int(H).

CASE 1: j is even. Note that the top leaf of the stack is in int(H). Now, n− 1 is either even or odd.

CASE 1.1: n−1 is even. We have that R(k, n−3) ∈ int(H). But then we must have R(k, n−2) ∈ ext(H)
and R(k + 1, n− 2) ∈ ext(H), contradicting Lemma 1.14. End of Case 1.1. See Figure 3.15(a).
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CASE 1.2: n − 1 is odd. Then we must have that R(k + 1, n − 2) is a small southern cookie. But this
contradicts our assumption that C is the easternmost small cookie in SmallCookies{N,S}. End of Case
1.2. End of Case 1. See Figure 1.15 (b).

n-1

-2

k +1

Fig 3.16(a). Case 2.1.

n-1

-2

0

1

2

k +1 +2 +3

Fig 3.16(b). Case 2.2(a).

n-1

-2

0

1

2

k +1 +2 +3

Fig 3.16(c). Case 2.2(b).

CASE 2: j is odd. Note that the top
leaf of the stack is in ext(H). Again,
n− 1 is either even or odd.

CASE 2.1: n − 1 is odd. We have
that R(k, n− 2) ∈ ext(H). But then,
the fact that e(k, k + 1;n − 1) ∈ H
implies that R(k, n−2) is not a cookie
neck, contradicting Lemma 1.14. End
of Case 2.1. See Figure 3.16 (a).

CASE 2.2: n − 1 is even. We have that e(k + 1, k + 2; 0) ∈ H. Then, either e(k + 2, k + 3; 0) ∈ H, or
e(k + 2; 0, 1) ∈ H.

CASE 2.2(a): e(k+2, k+3; 0) ∈ H. Then we must have e(k+2; 1, 2) ∈ H. Note that for i ∈ {1, 3, ..., n−2},
e(k + 2; i, i + 1) ∈ H implies e(k + 2; i + 2, i + 3) ∈ H. Then, for i ∈ {1, 3, ..., n − 2}, we have that
e(k+ 2; i, i+ 1) ∈ H. Note that we must also have e(k+ 2, k+ 3;n− 2) ∈ H. Then R(k+ 2, n− 2) must
be a southern small cookie, contradicting the easternmost assumption. End of Case 2.2 (a).

CASE 2.2(b): e(k+2; 0, 1) ∈ H. Note that if e(k + 2, k + 3; 1) ∈ H, then R(k + 2, 0) must be a small
cookie, contradicting the easternmost assumption. Then e(k + 2, k + 3; 1) /∈ H. But then we have
e(k + 2; 1, 2) ∈ H, and we are back to Case 2.2(a). End of Case 2.2(b). End of Case 2.2. End of Case 2.
□

We will need Lemmas 3.13-3.16 to prove Lemma 3.12.

Lemma 3.13. Let G be an m× n grid graph, and let H be a Hamiltonian cycle of G. Let C be a small
cookie of G. Assume that G has only one large cookie, and that there is a j-stack of A0 starting at the
A0-type containing C. Let L be the leaf in the top (jth) A0 of the stack, and assume that L is followed
by an A1-type. Let X and Y be the boxes adjacent to the middle-box of the A1-type that are not its
H-neighbours. If P (X,Y ) has no switchable boxes, then either:

(i) there is a cascade of length at most min(m,n), which avoids the stack of A0’s, and after
which P (X,Y ), gains a switchable box, or

(ii) there is a cascade of length at most min(m,n) + 1, that collects L and avoids the stack of A0’s.

We postpone the proof of Lemma 3.13 until Section 4. It takes up all of the section.

Lemma 3.14. Let G be an m × n grid graph, let H be a Hamiltonian cycle of G, and let C ∈
SmallCookies{N,S} be an easternmost small cookie. Assume that G has only one large cookie, and
that there is a j-stack of A0 starting at the A0-type containing C. Let L be the leaf contained in the top
(jth) A0 of the stack. Assume that L is followed by an A1-type with looping H-path P (X,Y ). Let X ′

be the box of G that shares edges with X and Y . Then X ′ ∈ G2.

+1

ℓ

-1

-1 k +1

YX

L

X′

Fig. 3.17 (a). Case 1.

+1

ℓ

-1

-1 k +1 +2

YX

L

X′

Fig. 3.17 (b). Case 2.

Proof. For definiteness, assume that L is the northern leaf
R(k, l − 2), and that X = R(k − 1, l). Then X ′ = R(k, l) and
Y = R(k+1, l). Note that l− 2 ≥ 0 and l+2 ≤ n− 1. Either
P (X,Y ) is contained in ext(H), or P (X,Y ) is contained in
int(H), so there are two cases to check.

CASE 1: P (X,Y ) ⊂ ext(H). By Lemma 1.14, we must have
that m− 1 > k + 2 and k − 1 > 0. To see that n− 1 > l + 2,
assume for contradiction that n− 1 = l + 2. By Lemma 1.14,

X + (1, 0) and Y + (1, 0) are cookie necks. But this contradicts the assumption that there is only large
cookie in G. See Figure 3.17 (a). End of Case 1.
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CASE 2: P (X,Y ) ⊂ int(H). By Lemma 1.14, we must have that m− 1 > k + 2 and k − 1 > 0. To see
that n − 1 > l + 2, assume for contradiction that n − 1 = l + 2. Lemma 1.14 implies that X ′ + (0, 1) is
the neck of the large cookie of G. But now X ′ + (2, 1) must be a small cookie of G, contradicting the
easternmost assumption. See Figure 3.17 (b).

Lemma 3.15. Let G be an m × n grid graph, let H be a Hamiltonian cycle of G, and let C ∈
SmallCookies{N,S} be an easternmost small cookie. Assume that G has only one large cookie, and
that there is a j-stack of A0 starting at the A0-type containing C. Let L be the leaf in the top (jth) A0 of
the stack. Assume that L ∈ int(H) and that L is followed by an A1-type with looping H-path P (X,Y ).
Let X ′ be the box of G that shares edges with X and Y . If X ′ is not in G3 then, either X ′ 7→ W is a
cascade, or there is a cascade µ,X ′ 7→ W , of length two, with X ′ 7→ W nontrivial in either case.

Proof. Suppose that X ′ is not in G3. By Lemma 3.14, X ′ ∈ G2 \G3. For definiteness assume that L is
a northern leaf, and let X ′ = R(k, l). The assumption that L ∈ int(H) implies that l − 2 > 0.

k +1 +2 +3

C

Fig 3.17 1
2
. m− 1 = k + 3

Now we check that m − 1 > k + 3. By Lemma 1.14, m − 1 > k + 2. Assume for
contradiction that m − 1 = k + 3. Note that we must have e(k + 1, k + 2; 0) ∈ H,
e(k + 2, k + 3; 0) ∈ H, and e(k + 3; 0, 1) ∈ H. This implies that we must have
e(k + 2; 1, 2) ∈ H and e(k + 2, k + 3; 1) ∈ H. But now H misses v(k + 3; 2). It
follows that we must have m − 1 > k + 3. See Figure 3.17 1

2 (b). By symmetry,
0 < k − 2. It follows that l + 3 = n− 1.

The same argument used in Case 2.2 of Lemma 3.11 (see Figures 3.16 (b) and (c)) shows that we
have e(k + 2; l + 1, l + 2) ∈ H and e(k + 2, k + 3; l + 1) ∈ H. Now either e(k, k + 1; l + 2) ∈ H or
e(k, k + 1; l + 2) /∈ H. See figures 3.18 (a) and (b).
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Fig. 3.18 (a). Case 1.
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Fig. 3.18 (b). Case 2.

CASE 1: e(k, k + 1; l + 2) ∈ H. By Lemma 1.16, X ′ 7→
X ′+(1, 1) is a valid move, and by Observation 3.4, X ′ 7→
X ′ + (1, 1) creates no new cookies. End of Case 1.

CASE 2: e(k, k + 1; l + 2) /∈ H. Lemma 1.14 implies
that e(k+1, k+2; l+2) cannot be in H either. It follows
that X ′+(0, 2) must be the neck of the large cookie. The
assumption that there is only one large cookie implies that
e(k+ 2; l+ 2, l+ 3) /∈ H. Then we must have e(k+ 2, k+

3; l + 2) ∈ H. Then, by Lemma 1.16, X ′ + (1, 1) 7→ X ′ + (2, 1), X ′ 7→ X ′ + (1, 0) is the cascade we seek.
□

Lemma 3.16. Let H be a Hamiltonian cycle of an m × n grid graph G. Let X ′ ∈ G3 ∩ ext(H) be a
switchable box, and let P (X,Y ) be the looping H-path of X ′. Assume that P (X,Y ) has a switchable
box in G0 \G2. Then switching X ′ splits H into two cycles H1 and H2 such that there is v1 ∈ H1 ∩R2

and v2 ∈ H2 ∩R2 with v1 adjacent to v2.

Proof. Let Z be a switchable box of P (X,Y ) in G0 \ G2. Orient H. Let (vx, vx+1) and (vy−1, vy) be

the edges of X ′ in H. Define
−→
K1 and

−→
K2 to be the subtrails

−→
K((vx, vx+1), (vy−1, vy)) and

−→
K((vy, vy+1),

(vx−1, vx)) of
−→
KH , respectively. By Lemma 1.16 (i), switching X ′ gives two cycles H1 and H2, with

V (H1) = V (
−→
K1 \ {vx, vy}) and V (H2) = V (

−→
K2). By Proposition 3.1, Z has a vertex in H1 and another

in H2, and the same holds for X ′. Since X ′ ∈ G3 and Z ∈ G0 \ G2, by JCT, H1 ∩ R2 ̸= ∅. Similarly,
H2∩R2 ̸= ∅. Now the argument in the last paragraph of Lemma 3.7 shows that there must be v1 ∈ H1∩R2

and v2 ∈ H2 ∩R2 with v1 adjacent to v2. □

Proof of Lemma 3.12. For definiteness assume that L is the northern leaf R(k, l). Let P (X,Y ) be the
looping H-path following L, with X = R(k − 1, l + 2) and Y = R(k + 1, l + 2). By Lemma 3.13, either
there is a cascade that collects L, or a cascade after which P (X,Y ) gains a switchable box, with both
cascades having length at most min(m,n)+1, and both avoiding the j-stack of A0’s starting at C. If the
former, we are done, so may assume that P (X,Y ) has a switchable box Z. Let J be the large cookie of
G and let NJ be the neck of J . Note that NJ is not a box of P (X,Y ). Now, P (X,Y ) is either contained
in ext(H) or int(H).

CASE 1: P (X,Y ) ⊆ ext(H). Then X ′ ⊂ int(H). By Lemma 3.14, X ′ ∈ G2. By Proposition 3.3, Z 7→ X ′

is a valid move. By Observation 3.4, Z 7→ X ′ does not create additional cookies. Then Z 7→ X ′,
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L+ (0, 1) 7→ L is a cascade that collects L.

CASE 2: P (X,Y ) ⊆ int(H) .Then X ′ ⊂ ext(H). If Z ⊂ G2, by Proposition 3.3 Z 7→ X ′ is a valid move,
and by Observation 3.4, Z 7→ X ′ does not create additional cookies. Then Z 7→ X ′, L 7→ L+ (0, 1) is a
cascade that collects L.

Suppose then that Z ⊂ G0 \ G2. By Lemma 3.15, we only need to check the case where X ′ ∈ G3.
Note that switching X ′ splits H into two cycles H1 and H2. By Lemma 3.16 there is v1 ∈ H1 ∩ R2 and
v2 ∈ H2 ∩ R2 with v1 adjacent to v2. By Lemma 3.5 there is a cascade X ′ 7→ W , or µ,X ′ 7→ W , with
X ′ 7→ W nontrivial. Note that here, X ′ plays the role that Z played in Lemma 3.5. Then µ,X ′ 7→
W,L+ (0, 1) 7→ L or X ′ 7→ W,L+ (0, 1) 7→ L is a cascade that collects L.

We have just shown that if P (X,Y ) has a switchable box, then the cascade required to collect L has
length at most three. By Lemma 3.13, the cascade after which P (X,Y ) to gains a switchable box has
length at most min(m,n). Thus, at most min(m,n) + 3 moves are required to collect L. □

3.3 Summary

• In Section 3 we proved the MLC and 1LC algorithms. The proof of the MLC algorithm is fully contained
here, while the proof of the 1LC algorithm depends on Lemma 3.13, whose proof is given in Section 4.

Proposition 3.3 characterizes when double-switch moves are valid and serves as the primary tool for
both algorithms.

The MLC algorithm handles the case where H has multiple large cookies. To collect a large cookie J
with switchable neck NJ , we look for a switchable box Z in the looping H-path of NJ . Proposition 3.8
shows that either such a Z already exists, or a there is single preparatory move that produces one.

The 1LC algorithm handles the case where H has exactly one large cookie and at least one small
cookie. It collects outermost small cookies. Suppose that C is an outermost small cookie. Either C can
be collected immediately by a single move, or C is followed by a j-stack of A0-types and an A1-type
with switchable middle-box X ′. If the latter, let P (X,Y ) be the H-path determined by X ′. If P (X,Y )
contains a switchable box Z, then C can be collected by either switching X ′ directly (if Z ∈ G2) or by
using Lemma 3.5 to find a cascade of length at most two that enables switching X (if Z ∈ G0 \G2). In
both cases, a cascade of flips then collects C. The existence of such a switchable box Z is guaranteed by
Lemma 3.13, whose proof takes up Section 4. •
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4 Looping fat paths, turns and weakenings

Fig. 4.1. A southern looping fat
path G⟨N [P (X,Y ]⟩. N [P (X,Y ]
shaded in light blue. P (X,Y )

traced in red.

XY

ℓ

k

Definitions. Let J = {X1, X2, ..., Xr} be a collection of boxes in an m×n
grid graph G, and let H be a Hamiltonian cycle of G. We will use the
notationG⟨J⟩ to denote the subgraph ofG with vertex set V (G⟨J⟩) = V (J)
and edge set E(G⟨J⟩) = E(J) ∩ E(H). The boxes of G⟨J⟩ are the boxes
of J . We call G⟨J⟩ the subgraph of G induced by J .

Suppose that the southern leaf R(k, l) is followed by an A1-type. Let
X = R(k + 1, l − 2) and Y = R(k − 1, l − 2). Let P (X,Y ) be a southern
looping H-path following the southern leaf R(k, l). The set of all boxes
in P (X,Y ), along with their H-neighbours, is called the H-neighbourhood
of P (X,Y ), and is denoted by N [P (X,Y )]. Consider the subgraph F =
G⟨N [P (X,Y )]⟩ of G induced by N [P (X,Y )]. We define a short weakening
of F to be a cascade of length three or less after which, the edge {v(k, l − 1), v(k + 1, l − 1)} is in
the resulting Hamiltonian cycle of G. We say that F is a southern looping fat path if F has no short
weakening. We define western, northern and eastern looping fat paths analogously.

Assume that G has only one large cookie, and that there is a j-stack of A0 starting at the A0-type
containing an outermost southern small cookie C. Let L be the leaf in the top (jth) A0 of the stack,
and assume that L is followed by an A1-type with looping H path P (X,Y ). Let F = G⟨N [P (X,Y )]⟩. If
F has no short weakening, we say that F a southern looping fat path anchored at the outermost small
southern cookie C. Analogous definitions apply for northern, eastern, and western looping fat paths.

We remark that if P (X,Y ) has a switchable box then, by Proposition 3.3 and the proof of Lemma
3.12, F has a short weakening, and thus it cannot be a looping fat path.

Throughout the remainder of this section, we assume that G has exactly one large cookie, and that
all looping fat paths considered are anchored at some outermost small cookie.
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Fig. 4.2. S→(k, l;
k + 3, l − 3).

We define below a subgraph of G consisting of the union of translations of two adjacent
and perpendicular edges of G. Let r ∈ N, and let the stairs from (k,l) to (k+r,l-r) east
be denoted by S→(k, l; k + r, l − r) and be defined as:

S→(k, l; k + r, l − r) =

r−1⋃
j=0

(
e(k, k + 1; l) + (j,−j)

)
∪
(
e(k + 1; l − 1, l) + (j,−j)

)
.

We define d(S) = r to be the length of S→(k, l; k + r, l − r). We say that S→(k, l; k + r, l − r) starts at
v(k, l) and ends at v(k + r, l − r). The subscripted arrow indicates the direction from v(k, l) of the first
edge of the subgraph. By choosing an “up”, “down”, “left” or “right” arrow for direction and a sign for
the third and fourth arguments of S□(k, l; k ± r, l ± r) we may describe any of the eight possible steps
subgraphs starting at the vertex v(k, l). See Figure 4.2.

Definitions. • Let H be a Hamiltonian cycle of an m×n grid graph G. Let T be the subgraph of H on
the edges S↓(k+1, l; k′, l′ +1), e(k; l− 1, l) and e(k′ − 1, k′; l′), where k′ = k+ d(T ), l′ = l− d(T ), where
d(T ) = d(S) + 1 is the length of T and d(T ) ≥ 2. We call T a north-east turn. If both e(k, k + 1; l) and
e(k′; l′, l′ + 1) belong to G \H, call T an open north-east turn. If exactly
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Fig. 4.3. A half-open
northeast turn.

one of e(k, k + 1; l) and e(k′; l′, l′ + 1) is in H, then T is a half-open north-
east turn. If both e(k, k + 1; l) ∈ H and e(k′; l′, l′ + 1) ∈ H, then T is a
closed north-east turn. See Figure 4.3 For any north-east turn T , we say that
R(k, l − 1) is the northern leaf of T and R(k′ − 1, l′) is the eastern leaf of
T . If e(k, k + 1; l) /∈ H we call R(k, l − 1) an open northern leaf of T and if
e(k, k+1; l) ∈ H we call R(k, l− 1) a closed northern leaf of T. We note that
the two leaves of a turn will determine its “leaf prefix”: If a turn has a north
leaf and an east leaf then the turn is a north-east turn.

We say that a looping fat path F has a turn (open, half-open or closed)
to mean that there exists some turn T of H such that E(F ) ⊃ E(T ).

Sketch of proof of Lemma 3.13. Let H be a Hamiltonian cycle of an
m × n grid graph G. Assume that P (X,Y ) is a looping H-path with no switchable boxes, following a
leaf L. It follows that P (X,Y ) is contained in a looping fat path F . In Section 4.2, we show that every
looping fat path must have a turn. In Sections 4.3 we show that given a turn, we can find a cascade
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we call a weakening (precise definition in Section 4.3) that collects at least one of the leaves of the turn.
Then we show that after such a cascade, either P (X,Y ) gains a switchable box, or we can extend the
cascade by a single move to collect L. The rest of the Section is organized as follows. Section 4.1 proves
structural properties of fat paths, on which the later sections build. Section 4.2 shows that every fat path
contains a turn (Proposition 4.7). In Section 4.3 we define weakenings, prove that turns have weakenings,
and give a proof of Lemma 3.13. •

4.1 Properties of looping fat paths

Lemma 4.1. Let F = G⟨N [P (X,Y )]⟩ be a looping fat path. Let W = R(k, l) 2 be a box of P = P (X,Y )
with the H-neighbour Z = W + (0,−1) southward in N [P ] \ P . Then:

(a) Z has exactly one H-neighbour in P and W has no other H-neighbour in N [P ] \ P .
(b) If W is not an end-box (i.e. X or Y ) of P , then the H-neighbours of W in P are W + (−1, 0)

and W + (1, 0). Furthermore, S→(k − 1, l; k, l − 1) ∈ H, S↑(k + 1, l − 1; k + 2, l) ∈ H,
and (k, k + 1; l + 1) ∈ H.

(c) If W is an end-box of P , then e(k, k + 1; l + 1) ∈ H and exactly one of e(k; l, l + 1) and
e(k + 1; l, l + 1) belong to H.

(d) Z is a leaf or Z is a switchable box in H.
Analogous statements apply when Z is west, north or east of W .

Proof of (a). Note that if Z has more than one H-neighbour in P then we can make an H-cycle. To
see that W has no other H-neighbour in N [P ] \ P , assume for contradiction that W has at least two
H-neighbours in N [P ] \ P .

If W is an end-box of P , then, by definition of A1, W has at most two H-neighbours, and at least
one of them must belong to P , contradicting our assumption that W has at least two H-neighbours in
N [P ] \ P .
If W is not an end-box, then W must have four H neighbours: two in N [P ] \ P and two in P . By
definition of a looping fat path, at least one of the neighbours of W in P , say W ′, is not an end-box. But
then W ′ must be switchable, contradicting that F is a looping fat path. □
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Fig. 4.4 (b).

Proof of (b). First we show that the H-neighbours of W
are W + (1, 0) and W + (−1, 0). Assume for contradiction
that W + (1, 0) is not an H-neighbour of W . Then the H-
neighbours of W in P must be W + (−1, 0) and W + (0, 1).
It follows that S→(k − 1, l; k, l − 1) ∈ H and S→(k − 1, l +
1; k, l + 2) ∈ H. Note that, by the definition of A1 and
looping fat paths, W + (−1, 0) is not an end-box of P . But

then W + (−1, 0) is a switchable box of P , contradicting that F is a looping fat path. Therefore, the
H-neighbours of W in P are W + (−1, 0) and W + (1, 0). It follows that S→(k − 1, l; k, l − 1) ∈ H and
S↑(k + 1, l − 1; k + 2, l) ∈ H, and by part (a), (k, k + 1; l + 1) ∈ H. See Figure 4.4 (a) and (b). End of
proof for (b).
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Fig. 4.5 (b). Case 1:
F is eastern.
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Fig. 4.5 (c). Case 1:
F is southern.
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Fig. 4.5 (d). Case 2.

Proof of (c). By part (a) and the assumption that W is an end-box of P , W has exactly one H-neighbour
in P and no other H-neighbours in N [P ] \ P . It follows that W has exactly two edges in H and two
edges not in H. Assume for contradiction that the other edge of W not in H is e(k, k + 1; l + 1). But
then e(k; l−1, l) ∈ H and e(k+1; l−1, l) ∈ H and the W is switchable, contradicting that F is a looping
fat path. It follows that e(k, k+1; l+1) ∈ H. Since W has exactly two edges in H, we have that exactly
one of e(k; l, l + 1) and e(k + 1; l, l + 1) belong to H. See Figure 4.5 (a). End of proof for (c).

Proof of (d). W is either an end-box of P or it is not.

2W = R(k, l) is not related to the southern leaf R(k, l) in the definitions in page 18.
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CASE 1: W is an end-box of P. By part (c), we may assume WLOG that e(k; l, l + 1) ∈ H and e(k +
1; l, l+1) /∈ H. Then F is eastern or southern. Suppose that F is eastern. Then e(k+1, k+2; l+1) ∈ H.
It follows that S↑(k+1, l−1; k+2, l) ∈ H. But then W+(1, 0) ∈ P is switchable, contradicting that F is a
looping fat path. So F must be southern. Then e(k; l−1, l) ∈ H. It follows that S↑(k+1, l−1; k+2, l) ∈ H.
Now, either e(k, k + 1; l − 1) ∈ H, or e(k, k + 1; l − 1) /∈ H. Either way, (d) is satisfied. See figures 4.5
(b) and (c). End of Case 1.

CASE 2: W is not end-box of P. By part (b), the H-neighbours of W in P are W +(−1, 0) and W +(1, 0)
and we have that S→(k−1, l; k, l−1) ∈ H, S↑(k+1, l−1; k+2, l) ∈ H. Then, either e(k, k+1; l−1) ∈ H
or e(k, k + 1; l − 1) /∈ H. Either way, (d) is satisfied. See Figure 4.5(d). □

Definitions. Let G be an m×n grid graph, let H be a Hamiltonian cycle of G and let J be an H-subtree
of an H-component of G. We say that a box Z of J is a border box of J if Z is an H-neighbour of a
box Z ′ ∈ G−1 \ J . We will call the edge that Z and Z ′ share a shadow edge of J . We call the set of all
shadow edges of J the shadow border of J and denote it by hb(J). We define the shadow of J to be the
graph h(J) with vertex set V (h(J)) = V (J) and edge set E(h(J)) = (E(J) ∩E(H)) ∪ hb(J). The boxes
of the shadow of J are the same as the boxes of J . We note that shadow edges cannot be incident on
boxes of P .

Observation 4.2. Let F = G⟨N [P (X,Y )]⟩ be a looping fat path. Then the shadow edges of the H-
subtree N [P ] can only be incident on boxes of N [P ] \P . Moreover, exactly one of the two boxes incident
on a shadow edge of N [P ] belongs to N [P ] \ P , and the other belongs to G−1 \N [P ].

Lemma 4.3. LetG be anm×n grid graph, letH be a Hamiltonian cycle ofG and let F = G⟨N [P (X,Y )]⟩
be a looping fat path in G. Then E(h(F )) is a Hamiltonian cycle of h(F ).

Proof. Since every vertex of h(F ) is incident on some edge of E(h(F )), it is sufficient to show that
E(h(F )) is a cycle. We will prove:

(i) Every vertex of h(F ) has degree two in h(F ).
(ii) E(h(F )) is connected.

Proof of (i). Let v = v(k, l) ∈ V (F ) and let R(k − 1, l− 1) = Z. Either v has a shadow edge incident on
it or it does not.
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Fig. 4.6. Case 1.1.

CASE 1. v has no shadow edge incident on it. Then there are two edges e1 and e2 of
H incident on v. These edges are either colinear or not colinear, so there are two cases
to check.

CASE 1.1. e1 and e2 are colinear. For definiteness assume that e1 = e(k; l − 1, l),
e2 = e(k; l, l + 1) and that Z + (1, 0) ∈ F . Since e(k, k + 1; l) is not a shadow edge,

Z + (1, 1) ∈ F as well, v(k; l − 1) ∈ F and v(k; l + 1) ∈ F . Since e(k − 1, k; l) is not a shadow edge, we
have that degh(F )(v) = 2. See Figure 4.6. End of Case 1.1.
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Fig. 4.7 (a). Case
1.2. Z + (0,−1) ∈ F .
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Fig. 4.7 (b). Case
1.2. Z + (0,−1) /∈ F .

CASE 1.2. e1 and e2 are not colinear. For definiteness assume
that e1 = e(k; l − 1, l), e2 = e(k, k + 1; l). Then Z + (1, 0) ∈ F or
Z + (1, 0) /∈ F .

If Z+(1, 0) ∈ F , then v(k; l− 1) ∈ F and v(k+1; l) ∈ F . As v
has no shadow edges incident on it, it follows that deg(h(F ))(v) = 2.
See Figure 4.7 (a).

If Z+(1, 0) /∈ F , then at least one of Z, Z+(0, 1) and Z+(1, 1) belong to F . If Z ∈ F , since e(k−1, k; l),
is not a shadow edge, we have that Z + (0, 1) ∈ F . Similarly, Z + (1, 1) ∈ F . Then v(k; l − 1) ∈ F and
v(k + 1; l) ∈ F . As v has no shadow edges incident on it, it follows that deg(h(F ))(v) = 2. The cases
where Z + (0, 1) ∈ F and Z + (1, 1) ∈ F are similar and we omit them. See Figure 4.7(b). End of Case
1.2.

CASE 2. v has a shadow edge incident on it. For definiteness, let e(k; l − 1, l) be the shadow edge on
which v is incident. There are three possibilities: e(k−1, k; l) ∈ H and e(k; l, l+1) ∈ H, e(k−1, k; l) ∈ H
and e(k, k+ 1; l) ∈ H, and, e(k; l, l+ 1) ∈ H and e(k, k+ 1; l) ∈ H. By symmetry, we only need to check
the first two.

CASE 2.1: e(k − 1, k; l) ∈ H and e(k; l, l+ 1) ∈ H. Then e(k, k + 1; l) /∈ H. By Observation 4.2, exactly
one of Z and Z+(1, 0) belongs to N [P (X,Y )]\P (X,Y ) = N [P ]\P and the other belongs to G−1 \N [P ].
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Note that by Lemma 4.1 (d), Z + (1, 0) /∈ N [P ] \ P . Then we must have Z + (1, 0) ∈ G−1 \ N [P ] and
Z ∈ N [P ]\P . So, we have that v(k−1, l) ∈ F and v(k, l−1) ∈ F . By Corollary 1.9, Z+(0, 1) ∈ G−1\N [P ].
In order to have deg(h(F ))(v) = 2 we need to check that e(k, k + 1; l) and e(k; l, l + 1) do not belong to
h(F ). See Figure 4.8 (a).
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Fig. 4.8 (b). Case 2.1.
e(k, k + 1; l) ∈ hb(F ).

Assume for contradiction that e(k, k+1; l) is a shadow edge
of F . By Observation 4.2, Z + (1, 1) ∈ N [P ] \ P . Since F is
an H-subtree, there is an H-path P (Z,Z + (1, 1)) contained in
F . But then P (Z,Z+(1, 1)), Z+(1, 0), Z is an H-cycle, which
contradicts Proposition 1.3. Thus e(k, k+1; l) is not a shadow
edge of F . It follows that Z + (1, 1) belongs to G−1 \ F . See
Figure 4.8 (b).

Similarly, if e(k; l, l + 1) ∈ h(F ), then by Corollary 1.9,
Z + (1, 1) ∈ N [P ] again, and we obtain the same contradiction as above. End of Case 2.1.
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Fig. 4.9 (b). Case 2.2.
e(k; l, l + 1) ∈ hb(F ).

CASE 2.2: e(k − 1, k; l) ∈ H and e(k, k + 1; l) ∈ H. Then
e(k; l, l + 1) /∈ H. By Observation 4.2, exactly one of Z and
Z + (1, 0) belongs to N [P ] \ P and the other belongs to G−1 \
N [P ]. By symmetry, we may assume WLOG that Z ∈ N [P ]\P
and Z + (1, 0) ∈ G−1 \ N [P ]. By Corollary 1.9, Z + (0, 1) ∈
G−1 \N [P ]. In order to have degh(F )(v) = 2 we need to check
that e(k; l, l + 1) and e(k, k + 1; l) do not belong to h(F ).

Assume for contradiction that e(k; l, l + 1) is a shadow edge of F . Then Z + (1, 1) ∈ F . But now,

if we orient H as directed cycle
−→
KH , Z and Z + (1, 1) are on different sides of

−→
KH , contradicting

Corollary 1.11. Therefore, e(k; l, l+1) cannot be a shadow edge of F . See Figure 4.9 (b). It follows that
Z + (1, 1) ∈ G−1 \N [P ].

Similarly, if e(k, k + 1; l) ∈ h(F ), then by Corollary 1.9, Z + (1, 1) ∈ N [P ] again, and we obtain the
same contradiction as above. End of Case 2.2. End of Case 2. End of proof for (i).

Proof of (ii). Let u, v be vertices in F . Orient the subpath P = P (u, v) of H from u to v, labelled
u = u0, u1, .... If E(P ) ⊂ E(h(F )), then we’re done. Otherwise, let s be the number of shadow edges of
h(F ) that are incident on P . Let ui1 be the first vertex of P after u such that ui1 ∈ F but ui1+1 /∈ F .
Let ui′1

be the first vertex of P after ui1 that is in F . For j ∈ {2, ..., s} let uij be the first vertex of P
after ui′j−1

such that uij ∈ F but uij+1 /∈ F , and let ui′j
be the first vertex of P after uij that is in F .

Note that P (ui′s
, v) ⊂ P (u, v) and that P (ui′s

, v) is contained in F .
We claim that for 1 ≤ j ≤ s, {uij , ui′j

} is a shadow edge of F . It follows from this claim that

P (u, ui1), (ui1 , ui′1
), P (ui′1

, ui2), (ui2 , ui′2
), ..., P (ui′s−1

, uis), (uis , ui′s
), P (ui′s,v

) is contained in F . It remains
to check that the claim is true.
Proof of Claim. For definiteness let uij = v(k, l), uij+1 = v(k+1, l). Let R(k− 1, l− 1) = Z. Since uij+1

is not in F , Z+(1, 0) and Z+(1, 1) belong to G−1 \F . Since uij is in F , at least one of Z and Z+(0, 1)
is a box of F .

We will first show that uij−1 = v(k − 1, l). Assume for contradiction that uij−1 = v(k, l − 1) or
uij−1 = v(k, l + 1). By symmetry we only need to check one of the two. For definiteness assume that
uij−1 = v(k, l − 1).
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Fig. 4.10 (a).
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Fig. 4.10 (b).

Note that if Z + (0, 1) ∈ F , by Observation 4.2, Z + (0, 1) ∈
N [P (X,Y )] \ P (X,Y ). But then Z + (0, 1) is neither a leaf nor
a switchable box, contradicting Lemma 4.1 (d). It remains to check
the case where Z + (0, 1) ∈ G−1 \ F and Z ∈ N [P (X,Y )] \ P (X,Y ).
See Figure 4.10 (a). Using Lemma 4.1 (d) again, we have that
Z+(0,−1) ∈ P (X,Y ), e(k−1; l−1, l) ∈ H and e(k−1, k; l−1) /∈ H.
By Lemma 4.1 (b) and (c), we have that e(k− 1, k; l− 2) ∈ H. Note
that if Z + (0,−1) is not an end-box of P (X,Y ), by Lemma 4.1 (b),

e(k, k + 1; l − 1) ∈ H, e(k − 1; l − 2, l − 1) /∈ H and e(k; l − 2, l − 1) /∈ H. But then after Z 7→ Z + (1, 0),
Z + (0,−1) ∈ P (X,Y ) is switchable, contradicting that F is a looping fat path. See Figure 4.10(b) It
remains to check the case where Z + (0,−1) is an end-box of Z. WLOG assume that Z + (0,−1) = X.
There are three possibilities: X = Y + (2, 0), X = Y + (0,−2), and X = Y + (−2, 0).

CASE 1: Y = X+(2, 0). Then F must be northern, so e(k+1; l−2, l−1) ∈ H and e(k+1; l−1, l) ∈ H.
But then there is an H-cycle P (Y,X), X + (0, 1), X + (0, 2), X + (1, 2), X + (2, 2), X + (2, 1), Y , which
contradicts Proposition 1.3. See Figure 4.11 (a). End of Case 1.
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Fig. 4.11 (c).
Case 2.2.

CASE 2: Y = X + (0,−2). Then F can be
western or eastern.

CASE 2.1: F is western. Then e(k − 2, k −
1; l−2) ∈ H and e(k; l−2, l−1) ∈ H. It follows
that X+(−1, 0) ∈ P (X,Y ) and that e(k−2; l−
2, l−1) /∈ H. But then X+(−1, 0) is switchable,
contradicting that F is a looping fat path. See
Figure 4.11 (b). End of Case 2.1.

CASE 2.2: F is eastern. Then e(k − 1; l − 2, l − 1) ∈ H and e(k, k + 1; l − 2) ∈ H. It follows that
e(k, k+ 1; l− 1) ∈ H. But then X + (1, 0) ∈ P (X,Y ) is switchable, contradicting that F is a looping fat
path. See Figure 4.11 (c). End of Case 2.2. End of Case 2.
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Fig. 4.12. Case 3.

CASE 3: Y = X+(−2, 0). Then F must be northern, so e(k−1; l−2, l−1) ∈
H. It follows that e(k, k + 1; l − 1) ∈ H. But then X + (0, 1) 7→ X + (1, 1),
X + (−1, 0) 7→ X is a short weakening, contradicting that F is a looping
fat path. See Figure 4.12. End of Case 3. This concludes the proof that
uij−1 = v(k − 1, l).
Now, by Corollary 1.9, exactly one of Z and Z+(0, 1) belongs to F . WLOG,

assume that Z ∈ F . By Observation 4.2, since Z + (1, 0) is not in F , Z ∈ N [P (X,Y )] \ P (X,Y ). Note
that this means that e(k; l − 1, l) is a shadow edge of F . By Lemma 4.1 (d), e(k − 1, k; l − 1) ∈ H,
e(k − 1; l − 1, l) /∈ H and Z + (−1, 0) ∈ P (X,Y ).
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Fig. 4.13.

It remains to check that ui′j
= v(k, l−1). Assume for contradiction that ui′j

=

v(a, b) ̸= v(k, l − 1). For definiteness assume that ui′j−1 = v(a + 1, b). Note

that, by the proof that uij−1 = v(k − 1, l), we have that ui′j+1 = v(a− 1, b).

Let Z ′ = R(a − 1, b). By Corollary 1.9, exactly one of Z ′ and Z ′ + (0,−1)
belongs to F . Note that if Z ′ /∈ F , then Z ′+(0,−1) = Φ((ui′j

, ui′j+1), left) ∈
F . But then, Z ∈ F and Z = Φ((uij−1, uij ), right) contradicting Corollary
1.11. Thus we must have Z ′ ∈ F .

By Lemma 4.1 (d), we must have e(a−1, a; b+1) ∈ H, e(a−1; b, b+1) /∈ H
and Z ′ + (−1, 0) ∈ P (X,Y ). Let P (Z + (1, 0), Z ′ + (1, 0)) be the H-path

from Z + (1, 0) to Z ′ + (1, 0) contained in the H-walk Φ(
−→
K(((uij , uij+1), (ui′j−1, ui′j

)), right). Observe

that P (Z + (1, 0), Z ′ + (1, 0)) ⊂ G−1 \ F . Since F is an H-subtree, F is H-path-connected so there is an
H-path P (Z ′, Z) contained in F . But then, then P (Z ′, Z), P (Z + (1, 0), Z ′ + (1, 0)) is an H-cycle, which
contradicts Proposition 1.3. See Figure 4.13. Thus we must have ui′j

= v(k, l − 1). □

Proposition 4.4. Let G be an m × n grid graph, let H be a Hamiltonian cycle of G and let F =
G⟨N [P (X,Y )]⟩ be a looping fat path in G following a leaf L. Then h(F ) does not have consecutive
colinear edges other than the left and right collinear edges in the A1-type of F following L.

Proof. We need to check that h(F ) does not have consecutive colinear edges in the case where one of
those colinear edges is a left or right colinear edge of the A1-type of F and in the case where neither of
those colinear edges is a left or right colinear edge of the A1-type of F . We divide the proof into Lemmas
4.5 and 4.6.

ℓ+2

k−1

L

XY

Fig. 4.14.

Lemma 4.5. The shadow of F does not have a pair of consecutive colinear edges
in the case where one edge of the pair is one of the left or right colinear edges of
the A1-type that follows L.

Proof. For definiteness, assume that F is a southern looping fat path following
the leaf R(k−1, l+3). See Figure 4.14. Assume for contradiction that h(F ) does
have consecutive colinear edges and one of those edges is one of the right or left
colinear edges of the A1-type that follows e(k − 1, k; l + 3). For definiteness, assume that one of those
consecutive colinear edges is one of the right colinear edges of the A1-type that follows L. Then, either
e(k; l + 1, l + 2), e(k; l + 2, l + 3) is a pair of consecutive colinear edges or e(k; l − 1, l), e(k; l, l + 1) is a
pair of consecutive colinear edges. If the former, then deg(h(F ))(v(k, l+2)) = 3 contradicting Lemma 4.3,
so we only need to check the latter. Suppose then, that e(k; l− 1, l), e(k; l, l+ 1) is a pair of consecutive
colinear edges. Note that X and X + (0,−1) belong to F . If the edge e(k; l − 1, l) is in h(F ) then it is
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either a shadow edge or it belongs to H. We show that both cases lead to contradictions.
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ℓ

+1

+2
k +1 +2

XY

Fig. 4.15 (a). Case 1.1.

ℓ

+1

+2
k +1 +2

XY

Fig. 4.15 (b). Case 1.2.

CASE 1: e(k; l − 1, l) ∈ H. Then exactly one of
X + (0,−1) and X + (1, 0) must belong to P .

CASE 1.1: X + (0,−1) ∈ P . Note that if e(k +
1; l, l+1) ∈ H, then X+(0,−1) ∈ P is switchable,
contradicting the definition of a fat path, so we
only need to check the case where e(k + 1; l, l +
1) /∈ H. Then S↑(k + 1, l − 1; k + 2, l) ∈ H and
S↓(k + 1, l+ 2; k + 2, l+ 1) ∈ H. Now exactly one of X + (0,−2) and X + (1,−1) belong to P . Suppose
that X+(0,−2) ∈ P (Figure 4.15 (a)). Then e(k, k+1; l−1) ∈ H or e(k, k+1; l−1) /∈ H. If the former,
then X + (−2, 0) must be an end-box of P , but this contradicts the fact that the other end-box of P is
Y = X + (−2, 0); and if the latter then X + (0,−2) is switchable, contradicting that F is a looping fat
path. The case where X + (1,−1) belongs to P is very similar so we omit the proof. End of Case 1.1

CASE 1.2: X + (1, 0) ∈ P . Then X + (0,−1) ∈ N [P ] \ P and X + (0,−2) /∈ N [P ]. It follows that
e(k, k+1; l) is a shadow edge of F . But then deg(h(F ))(v(k, l)) = 3 contradicting Lemma 4.3. See Figure
4.15 (b). End of Case 1.2.

CASE 2: e(k; l− 1, l) ∈ hb(F ). Let Z = R(k− 1, l− 1). Then exactly one of Z and Z + (1, 0) belongs to
N [P ] \ P .

ℓ

+1

-1 k

XY

Z

Fig. 4.16 (a). Case 2.
Z ∈ N [P ] \ P .

ℓ

+1

-1 k 1

XY

Z

Fig. 4.16 (b). Case 2.
Z + (1, 0) ∈ N [P ] \ P .

If Z ∈ N [P ] \ P then Lemma 4.3 implies that e(k −
1, k; l) /∈ E(h(F )), but this contradicts Lemma 4.1 (d)
(Figure 4.16 (a)); and if Z + (1, 0) ∈ N [P ] \ P , then
Lemma 4.3 implies that e(k, k + 1, l) /∈ H, but this also
contradicts to Lemma 4.1 (d) (Figure 4.16 (b)). End of
Case 2. □

Lemma 4.6. The shadow of F does not have a pair of
consecutive colinear edges in the case where neither edge

of the pair is a left or right colinear edge of the A1-type that follows L.

Proof. It is a fact that none of the boxes of P discussed in this lemma can be end-boxes of P . The
justifications are straightforward but distracting so we will omit them and use this fact repeatedly and
implicitly throughout the proof.

Assume for contradiction that there is a pair of consecutive collinear edges in h(F ) where neither
edge of the pair is a left or right colinear edge of the A1-type that follows L. For definiteness, we may
assume that these edges are the horizontal edges e(k′− 1, k′; l′) and e(k′, k′+1; l′). Let R(k′− 1, l′) = Z.
Corollary 1.9 implies that exactly one of Z and Z +(0,−1) is in F . For definiteness, assume that Z ∈ F .
Then, by Lemma 4.3, e(k′; l′, l′ + 1) is neither in H nor in hb(F ). Now, either both e(k′ − 1, k′; l′) and
e(k′, k′ + 1; l′) belong to H, or at least one of them belongs to hb(F ).

CASE 1: Both e(k′ − 1, k′; l′) and e(k′, k′ + 1; l′) belong to H. By Lemma 4.3, e(k′; l′, l′ + 1) is not a
shadow edge of F . Then, Lemma 4.1 (a) implies that either exactly one of Z and Z + (1, 0) belongs to
N [P ] \ P or neither does.

ℓ′

+1
−1 k′

Z

Fig. 4.17 (a).
Case 1.1.

ℓ′

+1
−1 k′

Z

Fig. 4.17 (b).
Case 1.2.

CASE 1.1: Neither Z nor Z + (1, 0) belongs to N [P ] \ P . This
implies that Z and Z + (1, 0) are in P (Figure 4.17 (a)). Now, at
least one of e(k′ − 1, k′; l′ + 1) and e(k′, k′ + 1; l′ + 1) belongs to H.
For definiteness assume that e(k′ − 1, k′; l′ + 1) ∈ H. But then Z
is a switchable box in P , contradicting the definition of a fat path.
End of Case 1.1

CASE 1.2: Exactly one of Z and Z+(1, 0) belongs to N [P ]\P . For definiteness, assume that Z+(1, 0) ∈
N [P ] \ P . Then Z ∈ P . But now, the fact that Z is not an end-box and Lemma 4.1 (b) imply that
e(k′, k′ + 1; l′) /∈ H, contradicting the assumption of Case 1. End of Case 1.2. End of Case 1.

CASE 2: At least one of e(k′−1, k′; l′) and e(k′, k′+1; l′) belongs to hb(F ). Either e(k′−1, k′; l′) ∈ hb(F ),
or e(k′ − 1, k′; l′) /∈ hb(F ).
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ℓ′

+1
−1 k′

Z

Fig. 4.18 (a) Case 2.1

ℓ′

+1
−1 k′

Z

Fig. 4.18 (b).
Case 2.2(a).

ℓ′

+1
−1 k′

Z

Fig. 4.18 (c).
Case 2.2(b).

CASE 2.1: e(k′−1, k′; l′) ∈ hb(F ). It follows
that Z ∈ N [P ]\P . But then Z can be neither
switchable nor a leaf, contradicting Lemma
4.1(d). See Figure 4.18 (a). End of Case 2.1.

CASE 2.2: e(k′ − 1, k′; l′) /∈ hb(F ). Then
we must have that e(k′ − 1, k′; l′) ∈ H and

e(k′, k′ + 1; l′) ∈ hb(F ). Now, either Z + (1, 0) ∈ F or Z + (1, 0) /∈ F .

CASE 2.2(a): Z + (1, 0) ∈ F . Then, by Observation 4.2, Z + (1, 0) ∈ N [P ] \ P . But Z + (1, 0) can be
neither switchable nor a leaf, contradicting Lemma 4.1(d). See Figure 4.18 (b). End of Case 2.2(a).

CASE 2.2(b): Z+(1, 0) /∈ F . Then, Z must belong to N [P ]\P . This means that e(k′; l′, l′+1) ∈ hb(F ),
which, as we, as we noted in the second paragraph of the proof, is not possible. See Figure 4.18 (c). End
of Case 2.2(b). □

This completes the proof of Proposition 4.4. An immediate consequence of it is that the A1-type following
L is the only A1-type in F , so we can refer to it as the A1-type of F .

4.2 Turns

In this section we show that every looping fat path F must have a turn. We do this by showing that
the shadow h(F ) of a looping fat path F must have a (necessarily closed) turn and note that this would
immediately imply that F must have a turn.

In Lemma 4.7, Lemma 4.8, and Corollaries 4.9 (a) and (b) below, we will often use the definition of
the shadow of southern looping fat path, Proposition 4.4, and the fact that the A1-type of F is unique
in F , and write (DsFP) whenever we appeal to them.

−2 −1 k′ +1

ℓ′

−1

−2

Y X

Fig. 4.19.

Lemma 4.7. Let H be a Hamiltonian cycle of an m× n grid graph G and
let h(F ) be the shadow of a looping fat path of G. Then h(F ) has at least
one turn T1 such that both leaves of T1 belong to F .

Proof. For definiteness assume that F = G⟨N [P (X,Y )]⟩ is a southern loop-
ing fat path following R(k′− 1, l′+1) southward, with X = R(k′, l′− 1) and
Y = R(k′ − 2, l′ − 1). By Lemma 4.3, E(h(F )) is a cycle. Orient E(h(F ))

as a directed trail
−→
K so that the first edge of

−→
K is (v(k′, l′), v(k′ + 1, l′)).

With this orientation we can give a direction - N,S,E or W - to edges in−→
K , defined as the position of the head of an edge relative to its tail. See Figure 4.19.

Our choice of direction for the first edge and Lemma 1.6 imply that Boxes(Φ(
−→
K, right)) ⊂ Boxes(F )

so the boxes of h(F ) are on the right side of the oriented edges of K. We call this fact (RSK) for reference.
We sweep the edges of K in the direction of the orientation starting at v(k′, l′). We observe that we must
encounter at least one west edge eW , since Y is west of X. Let eW = e0 = e(k − 1, k; l) be the first west
edge encountered, let e1 be the edge preceding e0 in the sweep, let ej be the edge preceding the edge ej−1
in the sweep and let (v(k′, l′), v(k′ + 1, l′)) = es.

In this proof we will use the fact that eW is the first west edge encountered (1stW) several times.

ℓ

k

e0

e4
X

Fig. 4.20 (a). Case
1.1. Φ(e4, right) = X.

ℓ

k

e0

e4
Y X

Fig. 4.20 (b). Case
1.1. Φ(e4, right) = Y .

By (DsFP), e0 was immediately preceded by a south edge or
a north edge.

CASE 1: e1 is southern. We shall find a northeastern turn.
By (DsFP) and (1stW), the preceding edge e2 must be east-
ern; By (DsFP) and (1stW), e3 has to be southern. By
(1stW) e4 cannot be western. Then e4 is southern or e4 is
eastern.

CASE 1.1: e4 is southern. Then, by (DsFP) and (RSK), we
have that Φ(e4, right) = X or Φ(e4, right) = Y . But the former contradicts Proposition 4.4, and the
latter implies that degh(F )(v(k, l + 1) = 3, contradicting Lemma 4.3. See Figure 4.20. Thus, e4 must be
eastern. End of Case 1.1.
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CASE 1.2: e4 is eastern. By (DsFP), e5 is not eastern. Then e5 is northern or e5 is southern.

CASE 1.2(a): e5 is northern. Then there is a northeastern turn T1 on the edges e0, ..., e5 with both
leaves contained in F . See Figure 4.21 (a). End of Case 1.2 (a).

ℓ

k

e0

e5

Fig. 4.21(a).
ℓ

kk′

ℓ′

es−1

e0

X

Fig. 4.21(b). Case 1.2(b1).
ℓ

k

ej
0

e0

Fig. 4.21(c). Case 1.2(b2).

CASE 1.2 (b): e5 is southern. Let Q(j) be
the statement: “ej is southern and ej+1 is
eastern”. Now, either Q(j) is true for each
j ∈ {1, 3, ..., s− 1} (Case 1.2(b1)), or there
is some j0 ∈ {5, 9, ..., s−1} such that Q(j)
for each odd j < j0, but Q(j0) is not true
(Case 1.2(b2)).

CASE 1.2(b1). Then we have a northeast-
ern turn T1 on the edges e0, ..., es, e(k

′; l′ − 1, l′) with both leaves contained in F . See Figure 4.21 (b).
End of Case 1.2(b1).

CASE 1.2(b2). By (DsFP), ej0 is not eastern. If ej0 is southern, then we run into the same contradiction
as in Case 1.1; and if ej0 is northern then we have a northeastern turn T1 on the edges e0, ..., ej0 with
both leaves contained in F (Figure 4.21 (c)). End of Case 1.2(b2). End of Case 1.2 (b). End of Case 1.2.
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Fig. 4.22(a). Case 2.
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Fig. 4.22(b). Case 2.1

CASE 2: e1 is northern. We shall find
a southeastern turn with both leaves con-
tained in F . By (1stW) and (DsFP), e2
is eastern. By (DsFP), e3 is northern.
Note that (RSK) and Lemma 4.1 (d) im-
ply that Φ(e1, right) ∈ P and e1 ∈ H.
By Lemma 4.3, e(k, k + 1; l − 1) /∈ H and
e(k, k + 1; l) /∈ H. If e(k + 2; l − 1, l) ∈ H,
then Φ(e1, right) is switchable and in P ,
contradicting the definition of a fat path, so
we may assume that e(k + 2; l − 1, l) /∈ H.
Then we must have that S↓(k + 1, l + 1; k + 2, l) ∈ H, S↑(k + 1, l − 2; k + 2, l − 1) ∈ H and that
e(k + 2; l − 1, l) ∈ hb(F ).

By (1stW), e4 is not western. If e4 is northern then (DsFP) and (RSK) imply that Φ(e3, right) = X.
But then L = R(k − 1, l) and then degH(v(k − 1, l)) = 3, contradicting H is Hamiltonian. See Figure
4.22 (a). Then e4 must be eastern. By (DsFP), e5 is not eastern. Then e5 is southern or northern.

CASE 2.1: e5 is southern. By (RSK) and Lemma 4.1 (d), we have that Φ(e4, right) ∈ P , and that
e4 ∈ H. By Lemma 4.3, e(k−2; l−3, l−2) /∈ H and e(k−1; l−3, l−2) /∈ H. If e(k−2, k−1; l−3) ∈ H,
then Φ(e4, right) is switchable and in P , contradicting that F is a fat path, so we may assume that
e(k−2, k−1; l−3) /∈ H. It follows that S→(k−3, l−3; k−2, l−4) ∈ H and that S↑(k−1, l−4; k+2, l−1) ∈
H. Then there is a southeastern turn on e(k−2; l−4, l−3), S↑(k−1, l−4; k+2, l−1) ∈ H, e(k+1, k+2; l)
with both leaves in F . See Figure 4.22 (b). End of Case 2.1
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Fig. 4.23. Case 2.2(a).

CASE 2.2: e5 is northern. Let Q(j) be the statement: “ej is northern
and ej+1 is eastern”. Now, either Q(j) is true for each j ∈ {1, 3, ..., s−
1} (Case 2.2(a)), or there is some j0 ∈ {5, 7, ..., s− 1} such that Q(j)
for each odd j < j0, but Q(j0) is not true (Case 2.2(b)).

CASE 2.2(a). Then (DsFP) and (RSK) imply that Φ(es, right) = X.
This means that e(k′; l′ − 2, l′ − 1) ∈ H, e(k′; l′ − 1, l′) ∈ H, and that
Φ(es−1, right) ∈ h(F ). By Proposition 4.4, e(k′; l′ − 3, l′ − 2) /∈ H.
Note that if e(k′−1, k′; l′−2) ∈ H, then P (X,Y ) is theH-pathX,X+
(0,−1), X+(0,−2), X+(−1,−2), X+(−2,−2), X+(−2,−1), Y . This
contradicts our finding that Φ(es−1, right) ∈ h(F ). Then it must be
the case that e(k′−1, k′; l′−2) /∈ H. Then we must have e(k′, k′+1; l′−
2) ∈ H. It follows that S↑(k

′+1, l′−2; k+, l−1) ∈ H. Then there is a
southeastern turn T1 on e(k′; l′−2, l′−1), S→(k′+1, l′−2; k+2, l−1),

e(k + 1, k + 2; l) with both leaves contained in F . See Figure 4.23. End of Case 2.2(a).
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CASE 2.2(b). By (DsFP), ej0 is not eastern. Suppose that ej0 is northern (in orange in Figure 4.25).
The assumption that Q(j0) is false implies that ej0+1 is not eastern and (1stW) implies that ej0+1 is
not western. It must be the case that ej0+1 is also northern. By (DsFP) and (RSK), we have that
Φ(ej0 , right) = X. But then j0 − 1 = s, contradicting the assumption that j0 ∈ {5, ..., s − 1} (in orange
in Figure 4.24). Thus ej0 cannot be northern. It follows that ej0 is southern. Let ej0 = e(k′′; l′′, l′′ + 1).
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ej0 X

Fig. 4.24. Case 2.2(b).

Using the same arguments as in Case 2.1, we find that e(k′′; l′′ −
1, l′′) /∈ H, e(k′′+1; l′′−1, l′′) /∈ H, e(k′′, k′′+1; l′′−1) /∈ H, and that
Φ(j0 − 1, right) ∈ P . It follows that S→(k′′ − 1, l′′ − 1; k′′, l′′ − 2) ∈
H and that S↑(k

′′ + 1, l′′ − 2; k + 2, l − 1) ∈ H. Then there is a
southeastern turn T1 on e(k′′; l′′−2, l′′−1), S↑(k

′′+1, l′′−2; k+2, l−1),
e(k+1, k+2; l). with both leaves contained in F (Figure 4.25). End
of Case 2.2(b). End of Case 2.2. End of Case 2. □

Definition. Let G be an m× n grid graph, let H be a Hamiltonian
cycle of G, and let F be a looping fat path in G. We say that a turn
T of h(F ) is admissible if:

(i) no leaf of T is an end-box of F , and
(ii) both leaves of T belong to F .

Lemma 4.8. Let H be a Hamiltonian cycle of an m× n grid graph G and let h(F ) be the shadow of a
looping fat path of G. Then h(F ) has an admissible turn.

Proof. Let F , X, Y ,
−→
K and eW , e1, ...es be as in Lemma 4.7, including the assumption that F is southern

and (RSK).

CASE 1: e1 is southern. By Case 1 in Lemma 4.7, there is a northeastern turn T1. We continue sweeping−→
K , beginning from eW , until we find the first northern edge eN in the subtrail

−→
K(eW , eN ) of

−→
K , where

eN = (k̂; l̂, l̂+1) = ê0. We write (1stN) to refer to the fact that eN is the first northern edge encountered
after eW , whenever we appeal to it. Let ê1 be the edge preceding ê0 in the sweep, let êj be the edge
preceding the edge êj−1 in the sweep and let êt+1 = eW . Then ê1 is western or ê1 is eastern.

0

-1

-2

0 1 2

Y X

U2

U1,end(a,b)

Fig. 4.25. Case 3.2(a) The line
y − x+ 2 = 0 in red; U1,end shaded

orange, U2 shaded blue.

Before we consider each case, we will check that the subtrail−→
K(ê0, êt) of

−→
K does not contain the right or left colinear edges of

the A1-type of F . To this end, we will translate H by (−k′,−l′)
to simplify calculations. (DsFP) and (1stW) imply that for every

eastern edge in the subtrail
−→
K(es, e1) of

−→
K there is at most one

northern or southern edge. Denote by vend the head of the edge eW .
The assumption that e1 is southern and the fact that a shortest turn
has length two imply that vend is contained in the region U1,end, de-
termined by x ≥ 1 and |y + 2| ≤ x − 1 (Eq.1). Let vend = v(a, b).

It follows that
−→
K(êt, ê0) is contained in the region U2 bounded by

y ≤ b+ 1 and |x− a| ≤ b+ 1− y (Eq.2). See Figure 4.35.
We will check that U2 and the colinear edges of the A1-type of

F lie on two different sides of the line y = x− 2. By (Eq.1) we have
that b ≤ a−3 and by (Eq.2) we have that y ≤ x−a+b+1. Let (x, y) ∈ U2. Then y−x+2 ≤ −a+b+3 ≤ 0,
so U2 lies below the line y − x + 2. Plugging in the values of the coordinates of the vertices A1-type

v(x1, y1), we see that they lie above the line y = x − 2. This shows that
−→
K(êt, ê0) does not contain

colinear edges. We will write (NCE) whenever we appeal to this fact. Note that (NCE) implies (i).

ê0

êj0êj0

e2

e1eW

Fig. 4.26. Case 1.1.

CASE 1.1: ê1 is western. Note that ê1 ̸= eW , otherwise we get a
cycle on e1, eW , e1, e2. By (DsFP), ê2 is not western and by (1stN),
ê2 is not northern, so ê2 must be southern. By (NCE) ê3 cannot
be southern. Then ê3 must be western. If ê3 = eW , then we
have a southeastern turn T2 on ê0, ..., ê3, e1, e2, satisfying (i) and,
by (RSK), (ii) (in orange in Figure 4.27), so we may assume that
ê3 ̸= eW . By (DsFP), ê4 is not western and by (1stN), ê4 is not
northern. Then ê4 is southern.

Let Q(j) be the statement: “êj is western and êj+1 is southern”.
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Now, either Q(j) is true for each j ∈ {1, 3, ..., t + 1}, or there is some j0 ∈ {5, 7, ..., t + 1} such that
Q(j) for each odd j < j0, but Q(j0) is not true. If the former then we have a southeastern turn T2 on
ê0, ê1, ..., êt, eW , e1, e2 satisfying (i) and (ii) (blue in Figure 4.26), so assume the latter. By (NCE), êj0 is
not southern. If êj0 is eastern then we have southeastern turn on ê0, ê1, ..., êj0 satisfying (i) and (ii) (blue
in figure 4.26). Suppose then, that êj0 is western (green in figure 4.26). This is impossible: by (1stN).
êj0+1 is not northern; since Q(j0) is false, êj0+1 is not southern; and by (DsFP), êj0+1 is not western.
End of Case 1.1

ℓ̂

ℓ

k k̂

ê0

êj0 êt+1

êj0

Fig. 4.27. Case 1.2 (a) and (b)

CASE 1.2: ê1 is eastern. By (DsFP), ê2 is not eastern and by
(1stN), ê2 is not northern, so ê2 must be southern. By (NCE) ê3 is
not southern and by (DsFP), ê3 is not western. Then ê3 must be
eastern. (DsFP) and (1stN) imply that ê4 must be southern.

Let Q(j) be the statement: “êj is eastern and êj+1 is southern”.
Now, either Q(j) is true for each j ∈ {1, 3, ..., t−1}, or there is some
j0 ∈ {5, 7, ..., t− 1} such that Q(j) is true for each odd j < j0, but
Q(j0) is not true.

CASE 1.2 (a): Q(j) is true for each j ∈ {1, 3, ..., t − 1}. Then we
have a southwestern turn on ê0, ê1, ..., êt−1, êt, eW . Recall that eW =
e(k−1, k; l). Observe that R(k−2; l−1) ∈ P , so e(k−2; l−1, l) /∈ H.

Similarly, R(k̂ − 1, l̂ − 1) ∈ P and e(k̂ − 1, k̂; l̂ − 1) /∈ H. It follows

that R(k − 3, l − 1) ∈ F , R(k̂ − 1, l̂) ∈ F and that there is a southeastern turn T2 on e(k − 3, k − 2; l),

S→(k− 3, l− 1; k̂− 1, l̂− 2), e(k̂; l̂− 2; l̂− 1) satisfying (i) and (ii) (blue in Figure 4.27). End of Case 1.2
(a)

CASE 1.2 (b): There is some j0 ∈ {5, 7, ..., t − 1} such that Q(j) is true for each odd j < j0, but Q(j0)
is not true. If êj0 is western then we have a southeastern turn on ê0, ê1, ..., êj0 . Then as in Case 1.2 (a),
there is a southeastern turn T2 satisfying (i) and (ii) (in blue in Figure 4.27, with ej0 in green).

By (DsFP), êj0 is not southern. Suppose then êj0 is eastern. This is impossible: by (1stN). êj0+1 is
not northern; since Q(j0) is false, êj0+1 is not southern; and by (DsFP), êj0+1 is not eastern (in orange
in Figure 4.27). End of Case 1.2 (b). End of Case 1.2.

CASE 2: e1 is northern. By Case 2 in Lemma 4.7,
−→
K , has a southeastern turn T1. We continue sweeping

K, beginning from eW , until we find the first southern edge eS in the subtrail
−→
K(eW , eS) of

−→
K . where

eS = (k̂; l̂, l̂ + 1) = ê0. We write (1stS) to refer to the fact that eS is the first southern edge encountered
after eW , whenever we appeal to it. Let ê1 be the edge preceding ê0 in the sweep, let êj be the edge
preceding the edge êj−1 in the sweep and let êt+1 = eW . Then ê1 is western or ê1 is eastern.

CASE 2.1: ê1 is western. Note that the assumption that e1 is northern implies that ê1 ̸= eW , otherwise
there is a cycle e2, e1, eW , ê0. By (DsFP), ê2 is not western and by 1stS, ê2 is not southern, so ê2 must
be northern. By (DsFP)ê3 is not northern or eastern. Then ê3 must be western. By 1stS ê4 is not
southern, and by (DsFP), ê4 is not western. Then ê4 must be northern. Let Q(j) be the statement: “êj
is western and êj+1 is northern. Then either Q(j) is true for each j ∈ {1, 3, ..., t − 1} or there is some
j0 ∈ {5, 7, ..., t− 1} such that Q(j) for each odd j < j0, but Q(j0) is not true.

ê0

e2

e1

êt+1

ê4
ℓ̂

ℓ

kk̂

êj0

Fig. 4.28. Case 2.1 (a) and (b).

CASE 2.1 (a): Q(j) is true for each j ∈ {1, 3, ..., t − 1}. Then
there is a northeastern turn on ê0, ê1, ..., êt−1, êt, eW , e1, e2. As

in Case 1.2 (a), we have that R(k̂, l̂ + 1) ∈ P , R(k, l − 1) ∈ P ,

e(k̂, k̂ + 1; l̂ + 2) /∈ H and e(k + 1; l − 1, l) /∈ H. Then there is a

northeastern turn T2 on e(k̂; l̂+ 2, l̂+ 3), S↓(k̂+ 1, l̂+ 3; k+ 2, l),
e(k+1, k+2; l− 1) satisfying (i) and (ii) (in blue in figure 4.28).
End of Case 2.1(a).

CASE 2.1 (b): There is some j0 ∈ {5, 7, ..., t− 1} such that Q(j)
for each odd j < j0, but Q(j0) is not true. If êj0 is eastern then
we have a northeastern turn on ê0, ê1, ..., êj0 . Then, as in Case
2.1(a), there is a northeastern turn T2 satisfying (i) and (ii).

By (DsFP), êj0 is not southern. Suppose then, that êj0 is
western. This is impossible: by 1stS. êj0+1 is not southern; since
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Q(j0) is false, êj0+1 is not northern; and by (DsFP), êj0+1 is not western (in orange in Figure 4.28). End
of Case 2.1. End of Case 2.1(b). End of Case 2.1.

ê0

êj0

ê4

eW

êj0

Fig. 4.29. Case 2.2.

CASE 2.2: ê1 is eastern. By 1stS and (DsFP), ê2 is northern.
By (DsFP), ê3 is not western. An argument analogous to (NCE-
1) in Case 1 can be used to show that T2 and the A1-type lie on
two different sides of the line y = 2 − x. In this case, we have
that the region U1,end containing vend is determined by x ≥ 1 and
|y − 2| ≤ x− 1, and the region U2 containing T2, as defined in the
next paragraph, is determined by y ≥ b− 1 and |x− a| ≤ y− b+1.
We will refer to this argument as (NCE-2). Note that by (NCE-2),
ê3 is not northern. Then ê3 must be eastern. By (DsFP) and (1stS)
ê4 is not southern or eastern. Then ê4 must be northern.

Let Q(j) be the statement: “êj is eastern and êj+1 is northern”.
Now, either Q(j) is true for each j ∈ {1, 3, ..., t − 1}, or there is some j0 ∈ {5, 7, ..., t − 1} such that
Q(j) for each odd j < j0, but Q(j0) is not true. If the former then we have a northwestern turn T2 on
ê0, ê1, ..., êt−1, êt, eW satisfying (i) and (ii), (blue in figure 4.29 with êt−1, êt, eW dotted orange) so assume
the latter. If êj0 is western then again we have a northwestern turn T2 on ê0, ê1, ..., êj0 satisfying (i) and
(ii) (blue in figure 4.29). By (NCE-2), êj0 is not southern. Then, suppose that êj0 is western (green in
figure 4.33). This is impossible: by 1stS. êj0+1 is not southern; since Q(j0) is false, êj0+1 is not northern;
and by (DsFP), êj0+1 is not eastern. End of Case 2.2.

Corollary 4.9 Let G be an m×n grid graph, let H be a Hamiltonian cycle of G, let F = G⟨N [P (X,Y )]⟩
be a looping fat path in G, let T be an admissible turn of F , let L be a leaf of T , and let L′ be the
H-neighbour of L in F . Then:

(a) d(T ) ≥ 3, and
(b) L ∈ N [P ] \ P and L′ ∈ P .

Proof of (a). We prove the contrapositive. For definiteness, assume that T is northeastern with northern
leaf LN = R(k, l − 1). Suppose that d(T ) < 3. Then d(T ) = 2 and the eastern leaf of T must be
LE = R(k + 1, l − 2). Note that LN + (0,−1) ∈ F , otherwise LE , ..., LN , LN + (0,−1) is an H-cycle.

Now, by Proposition 4.4, e(k; l− 2, l− 1) and e(k, k+1; l− 2) cannot both belong to H. Then, either
exactly one of e(k; l − 2, l − 1) and e(k, k + 1; l − 2) belongs to H, or neither does.
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LE

Fig. 4.30. Case 1.
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k +1

LN

LE

Fig. 4.31. Case 2.

CASE 1: exactly one of e(k; l − 2, l − 1) and e(k, k +
1; l − 2) belongs to H. By symmetry, we may assume
WLOG that e(k; l−2, l−1) ∈ H and e(k, k+1; l−2) /∈
H. Note that the assumption that e(k, k+1; l−2) /∈ H
implies that F is northern. It follows that LN is an
end-box of P (X,Y ). See figure 4.30. End of Case 1.

CASE 2: neither e(k; l−2, l−1) nor e(k, k+1; l−2) belongs to H. Then e(k−1, k; l−1), e(k+1; l−3, l−2)
and S→(k− 1, l− 2; k, l− 3) belong to H. By Lemma 4.1(d), LN + (0,−1) must be long to P (X,Y ). It
follows that at least one of LN , LN +(0,−2), LE and LE +(−2, 0) belongs to P (X,Y ) and is switchable,
contradicting the assumption that F is a looping fat path. See figure 4.31. End of Case 2. End of proof
for (a).
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Fig. 4.32(a).
e(a, a+1; b+1)∈H.

-1

b

+1
a +1

LN

Fig. 4.32(b).
e(a, a+1; b+1)/∈H.

Proof of (b). Let T be an admissible turn. For definiteness, assume
that T is northeastern with northern leaf LN = R(a, b) By Corol-
lary 4.9(a), d(T ) ≥ 3. Then we have that e(a, a + 1; b − 1) ∈ H,
and that e(a + 1; b − 1, b) /∈ H. By (RSK), LN + (0,−1) and
LN + (1,−1) belong to F . This means that LN + (0,−1) = L′N is
the H-neighbour of LN in F . Now, either e(a, a+1; b+1) ∈ H or
e(a, a + 1; b + 1) /∈ H. If e(a, a + 1; b + 1) ∈ H, then, since LN is
not an end-box of P , LN ∈ N [P ] \ P . Then, by Lemma 4.1 (b), L′N ∈ P . And if e(a, a+ 1; b+ 1) /∈ H,
then LN is switchable, so LN ∈ N [P ] \ P . Since L′N ∈ F , by Lemma 4.1 (b), L′N ∈ P . Either way we
have that L′N ∈ P and and LN ∈ N [P ] \ P . See Figure 4.32. End of proof for (b). □
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4.3 Turn weakenings.

ℓ

ℓ′

n − 1
k k′ m − 1

LN

LE

Fig. 4.33. A half-open turn T in blue, its lengthening
T ′ in orange, Sector(T ) shaded in green.

Definitions. Let H be a Hamiltonian cycle of an m×n grid
graph G. Let T be a northeastern turn of H on {e(k; l −
1, l), S↓(k+1, l; k′, l′+1), e(k′−1, k′; l′)} and let LN and LE

be the leaves of T . Define a weakening of T to be a cascade
µ1, ..., µs, where µs is the first valid nontrivial move in the
cascade that has the form L 7→ L′, or L′ 7→ L, with L = LN

or L = LE . We note that µ1, ..., µs−1 must avoid T , as T
has no switchable boxes or leaves, other than L1 and L2.
We call a weakening consisting of three or less moves a short
weakening. We call the subgraph S↓(k + 1, l; k′, l′ + 1) the
stairs-part of T and denote it by S(T ). We say that T has
a lengthening T ′ if T ′ is a northeastern turn of H such that:

a) d(T ′) ≥ d(T ) and
b) S(T ′) ⊇ S(T ) + (1, 1).

Analogous definitions apply to southeastern, southwestern and northwestern turns. We note that if T ′ is
a lengthening of T , then T ′ is unique. Given a turn T0 let T (T0) = T be a set of lengthenings such that:

1. The turn T0 ∈ T
2. The turn Tj ∈ T if and only if Tj is a lengthening of the turn Tj−1.

Define the sector of T to be the induced subgraph of G bounded by e(k, k+1; l), S↓(k+1, l; k′, l′), e(k′−
1, k′; l′), and the segments [(k′, l′), (m − 1, l′)], [(m − 1, l′), (m − 1, n − 1)], [(m − 1, n − 1), (k, n − 1)],
[(k, n− 1), (k, l)], and denote it by Sector(T ). See Figure 4.33. Analogous definitions apply to sectors of
southeastern, southwestern and northwestern turns.

Lemma 4.10. Let H be a Hamiltonian cycle of an m× n grid graph G, and let T be a turn in H with
d(T ) ≥ 3. Then:

I. T has a short weakening or T has a lengthening.
II. If T ′ is a lengthening of T and T ′ has a weakening of length at most s, then T has a weakening of

length at most s+ 1, with s+ 1 ≤ min(m,n).

We prove Lemma 4.10 after we use it to prove Proposition 4.11.

Proposition 4.11. Let H be a Hamiltonian cycle of an m× n grid graph G, and let T be a turn in H
with d(T ) ≥ 3. Then T has a weakening of length at most min(m,n).

Proof. Let T = T0 be an admissible turn of H. If T0 has a short weakening, then we’re done, so we assume
T0 has no short weakening. By I in Lemma 4.10, T0 has a lengthening T1. So, T1 ∈ T , where T = T (T0).
Since m,n < ∞, we have that |T | < ∞. Let T = {T0, T1, ..., Tj}. Then Tj has no lengthening; thus, by
I of Lemma 4.10, it must have a short weakening. Then, by induction and II on Lemma 4.10, T0 has a
weakening. The bound follows immediately. □

Proof of Lemma 4.10. We first remark that none of the moves we use throughout this proof fit the
description of the moves in Observation 3.4 (i) and (ii) in Section 3. We will use this fact repeatedly and
implicitly.

Let H be a Hamiltonian cycle of G and let T be a turn of H with d(T ) ≥ 3. For definiteness, assume
that T is northeastern and that T is on {e(k; l − 1, l), S↓(k + 1, l; k′, l′ + 1), e(k′ − 1, k′; l′)}. Let LN be
the northern leaf of T and let LE be the eastern leaf of T . Since d(T ) ≥ 3, m− 1 ≥ k + 3 and 0 ≤ l − 3.
LN can be open or closed, so there are two cases to check.
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Fig. 4.34(a). Case 1

ℓ
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-3

+1 +2 +3k

Fig. 4.34(b). Case 1.1.

LN

LE

Proof of CASE 1: LN is closed. Proof of I. First we note
n − 1 ̸= l, otherwise H misses v(k + 2, l). Then we must
have S↓(k + 2, l + 1; k + 3, l) ∈ H. Now, n − 1 = l + 1,
n− 1 = l + 2, or n− 1 ≥ l + 3.

CASE 1.1: n-1=l+1. By Lemma 1.14, LN+(0, 1) ∈ int(H).
This implies that LN + (2, 1) is a small cookie of H, so
e(k + 3; l, l + 1) ∈ H. Then e(k + 3; l − 2, l − 1) ∈ H. It
follows that LN +(2,−2) = LE . But then LE 7→ LE+(0, 1)
is a short weakening of T . End of Case 1.1.
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Fig. 4.35 (a). Case 1.2 (a):
LN + (0, 2) ∈ ext(H).
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Fig. 4.35 (b). Case 1.2 (a):
LN + (0, 2) ∈ int(H).
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Fig. 4.36 (a). Case 1.2 (b):
e(k, k + 1; l + 2) ∈ H.
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Fig. 4.36 (b). Case 1.2 (b):
e(k, k + 1; l + 2) /∈ H.

CASE 1.2: n-1= l+2. Either e(k, k + 1; l+ 1) ∈ H
or e(k, k + 1; l + 1) /∈ H.

CASE 1.2(a): e(k, k + 1; l + 1) ∈ H. Either LN +
(0, 2) ∈ int(H) or LN + (0, 2) ∈ ext(H). If LN +
(0, 2) ∈ int(H), then LN + (0, 1) 7→ LN is a short
weakening of T . Suppose then, that LN + (0, 2) ∈
ext(H). This implies that LN + (0, 2) is a small
cookie. Then LN + (0, 1) 7→ LN + (0, 2), LN 7→
LN + (1, 1) is a short weakening. End of Case 1.2
(a).

CASE 1.2(b): e(k, k+ 1; l+ 1) /∈ H. Then S→(k−
1, l+1; k, l+2) ∈ H and S↓(k+1, l+2; k+2, l+1) ∈
H. Note that if e(k, k+1; l+2) ∈ H, then H misses
v(k+2, l+2), so we may assume that e(k, k+1; l+
2) /∈ H. It follows that e(k + 1, k + 2; l + 2) ∈ H.
Then LN + (0, 2) 7→ LN + (1, 2), LN + (0, 1) 7→ LN

is a short weakening. End of Case 1.2(b). End of
Case 1.2.
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Fig. 4.37. Case 1.3(a).

CASE 1.3: n − 1 ≥ l + 3. By Case 1.2, we may assume that
e(k, k + 1; l + 1) /∈ H, S→(k − 1, l + 1; k, l + 2) ∈ H and that
S↓(k + 1, l + 2; k + 2, l + 1) ∈ H. Now LE is either open or closed.

CASE 1.3(a): LE is closed. By previous cases and symmetry we
may assume that m − 1 ≥ k′ + 3. Using symmetry once more,
we may assume that e(k′ + 1; l′, l′ + 1) /∈ H. Then the turn T̂ on
{e(k; l+1, l+2), S↓(k+1, l+2; k′+2, l′+1), e(k′+1, k′+2; l′)} is
in H and it is a lengthening of T . End of proof of I for Case 1.3(a).

Proof of II for Case 1.3 (a). WLOG assume that the last move µs

of a weakening µ1, ..., µs of T̂ is Z 7→ L̂N, where L̂N is the northern
leaf of T̂ . Then µ1, ..., µs, LN + (0, 1) 7→ LN , is a weakening of T .

It remains to check that s + 1 ≤ min(m,n). Since the jth lengthening Tj in T (T ) is j units north and
east of T , and d(T ) ≥ 3, there can be at most min(m,n) − 3 such lengthenings. Since a turn with no
lengthening has a short weakening, s + 1 ≤ 3 + min(m,n) − 3 = min(m,n). End of II for Case 1.3(a).
End of Case 1.3(a).
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Fig. 4.38. Case 1.3(b).

CASE 1.3(b): LE is open. Either m − 1 < k′ + 2 or m − 1 ≥ k′ + 2. It
will follow from Case 2 that if a turn has on open leaf adjacent to the
boundary or at distance one away from the boundary, then we can find
a weakening outright. Therefore, we may assume that m− 1 ≥ k′ + 2.

If e(k′; l′+1, l′+2) ∈ H, then there is a weakening LE 7→ LE +(0, 1),
so we may assume that e(k′; l′ + 1, l′ + 2) /∈ H. Then the turn T̂ on
{e(k; l+1, l+2), S↓(k+1, l+2; k′ +1, l′ +2), e(k′, k′ +1; l′ +1)} is in H
and it is a lengthening of T . End of proof of I for Case 1.3.

Proof of II for Case 1.3(b).Let L̂N and L̂E be the northern and eastern
leaves of T̂ respectively, and let µ1, ..., µs be a weakening of T̂ . If µs is
the move X 7→ L̂N , then, as in the Case 1.3(a), µ1, ..., µs, LN +(0, 1) 7→ LN , is a weakening of T . Suppose
then that µs is the move Z ′ 7→ L̂E . Then µ1, ..., µs, LE 7→ LE+(0, 1), is a weakening of T . The argument
that s+ 1 ≤ min(m,n) is the same as the one in Case 1.3(a), so we omit it. End of proof of II for Case
1.3(b) End of Case 1.3(b). End of Case 1.3. End of Case 1.

CASE 2: LN is open. Proof of I. If n−1 = l then we must have e(k+1, k+2; l) ∈ H. Then LN 7→ LN+(1, 0)
is a weakening. Therefore, we may assume that n− 1 > l.

CASE 2.1: n− 1 = l + 1. Either e(k + 1, k + 2; l) ∈ H or e(k + 1, k + 2; l) /∈ H.
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Fig. 4.39 (a).
Case 2.

n− 1 = l.
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Fig. 4.39 (b). Case
2.1(a1). LN + (−1, 0) is

a small cookie.
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Fig. 4.39 (c). Case
2.1(a1). LN + (−1, 0) is

not a small cookie.

CASE 2.1(a): e(k+1, k+2; l) ∈ H. Then e(k, k+
1; l + 1) ∈ H and e(k + 1, k + 2; l + 1) ∈ H.
Then by Lemma 1.14, LN + (0, 1) ∈ intH, and
so LN ∈ intH and LN + (1, 0) ∈ extH. Either
k = 0, or k > 0.

CASE 2.1(a1): k > 0. Then LN + (−1, 0) ∈
extH, and LN+(−1, 0) is either is a small cookie
of H or it is not. If the former, then LN 7→

LN + (−1, 0) is a short weakening; and if the latter then LN 7→ LN + (1, 0) is a short weakening. See
figures 4.39 (b) and (c). End of Case 2.1(a1).
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Fig. 4.40. Case 2.1(a2)

CASE 2.1(a2): k = 0. Then e(0; l, l + 1) ∈ H, e(0; l − 2, l − 1) ∈ H, and
S→(0, l − 2; 1, l − 3) ∈ H. This implies that 0 ≤ l − 4 and that S←(1, l −
3; 0, l − 4) ∈ H. Then we must have S↑(2, l − 4; 3, l − 3) ∈ H as well, that
LE = LN +(2,−2) and that LE +(0,−1) ∈ extH. See Figure 4.40. Note that
if LE+(0,−1) is a small cookie, then LE 7→ LE+(0,−1) is a short weakening,
so we may assume that LE + (0,−1) is not a small cookie. Note that this
implies that 0 ≤ l − 5.

If e(3; l−4, l−3) ∈ H, then again LE 7→ LE +(0,−1) is a short weakening.
Similarly, if e(3; l− 2, l− 1) ∈ H, then LE 7→ LE + (0, 1) is a short weakening.
Therefore we only need to check the case where e(3; l − 4, l − 3) /∈ H and
e(3; l − 2, l − 1) /∈ H. Then LE + (1,−1) ∈ extH, and by the assumption that H is Hamiltonian,
m− 1 ≥ 4. Then we have S↓(3, l; 4, l − 1) ∈ H.
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Fig. 4.41. Case 2.1(a2).(i)

Note that either e(2, 3; l + 1) ∈ H and e(2, 3; l) ∈ H, or e(2; l, l + 1) ∈
H and e(3; l, l + 1) ∈ H. Either way, we must have e(3, 4; l) /∈ H and
e(3, 4; l+1) ∈ H. Now, either e(3; l−3, l−2) ∈ H or e(3; l−3, l−2) /∈ H.

CASE 2.1(a2).(i): e(3; l − 3, l − 2) ∈ H. Then LE + (1, 0) ∈ extH. By
Lemma 1.14, this implies that m − 1 ≥ 5. If e(4; l − 3, l − 2) ∈ H,
then LE + (1, 0) 7→ LE is a short weakening, so we may assume that
e(4; l−3, l−2) /∈ H. Then S↓(4, l−1; 5, l−2) ∈ H and S↑(4, l−4; 5, l−3) ∈
H. We must also have that S↓(4, l+1; 5, l) ∈ H and e(5; l, l+1) ∈ H. Then
e(5; l−2, l−1) ∈ H as well. See Figure 4.41. Then LE+(2, 0) 7→ LE+(2, 1),
LE + (1, 0) 7→ LE is a short weakening of T . End of Case 2.1(a2).(i).
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Fig. 4.42(a). Case 2.2.a2(ii)1.
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Fig. 4.42(b). Case 2.2.a2(ii)2.

CASE 2.1(a2).(ii): e(3; l − 3, l − 2) /∈ H.
Then e(3, 4; l − 3) ∈ H and e(3, 4; l − 2) ∈
H. Now, either e(2, 3; l + 1) ∈ H and
e(2, 3; l) ∈ H, or e(2; l, l + 1) ∈ H and
e(3; l, l + 1) ∈ H.

CASE 2.1(a2).(ii)1: e(2, 3; l+ 1) ∈ H and
e(2, 3; l) ∈ H. Then e(4; l − 2, l − 1) /∈ H.
Note that if e(4; l − 1, l) ∈ H, then LE +
(1, 1) 7→ LE +(1, 2), LE 7→ LE +(0, 1) is a
short weakening of T , so we may assume that. e(4; l−1, l) /∈ H. Then e(4, 5; l−1) ∈ H, S↓(4, l+1; 5, l) ∈
H, and e(5; l, l + 1) ∈ H. Then LE + (2, 2) 7→ LE + (2, 3), LE + (1, 1) 7→ LE + (1, 2), LE 7→ LE + (0, 1)
is a short weakening of T . End of Case 2.1(a2).(ii)1.

CASE 2.1(a2).(ii)2: e(2; l, l + 1) ∈ H and e(3; l, l + 1) ∈ H. Now, if e(4; l − 2, l − 1) /∈ H, than we
can use the same argument and find the same cascades as in Case 2.1(a2).(ii)1 (Fig, 4.22(b); and if
e(4; l−2, l−1) ∈ H, then we must have that e(5; l−2, l−1) ∈ H as well. Then LE +(2, 1) 7→ LE +(1, 1),
Then LE 7→ LE + (0, 1) is a short weakening of T . End of Case 2.1(a2).(ii)2. End of Case 2.1(a2).(ii).
End of Case 2.1(a2). End of Case 2.1(a).

CASE 2.1(b): e(k+1, k+2; l) /∈ H. Then we must have e(k+1; l, l+1) ∈ H and S↓(k+2, l+1; k+3, l) ∈ H.
Now, either e(k + 1, k + 2; l + 1) /∈ H or e(k + 1, k + 2; l + 1) ∈ H.
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ℓ

+1 +2 +3k

LN

Fig. 4.43(a). Case 2.1(b1).

ℓ
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+1 +2 +3k

LN

LE

Fig. 4.43(b). Case 2.1(b2).

CASE 2.1(b1): e(k + 1, k + 2; l + 1) /∈ H. Then we must
have e(k+2, k+3; l+1) ∈ H and that LN +(1, 1) ∈ extH
is the neck of the large cookie. Then k > 0, or k = 0.

If k > 0, then after LN + (1, 1) 7→ LN + (2, 1), we are
back to Case 2.1(a1). And if k = 0 then we are effectively
in the same scenario as in Case 2.1(a2), with the additional,
inconsequential assumption that LN +(1, 1) ∈ extH is the
neck of the large cookie. End of Case 2.1(b1).

CASE 2.1(b2): e(k + 1, k + 2; l + 1) ∈ H. Then e(k, k + 1; l + 1) /∈ H and S↓(k + 2, l + 1; k + 3, l) ∈ H.
Then we must have that e(k + 3; l, l + 1) ∈ H as well. This implies that e(k + 3; l − 2, l − 1) ∈ H. It
follows that LN +(2,−2) = LE , and that LE is open. Then LE 7→ LE +(0, 1) is a short weakening. End
of Case 2.1(b2). End of Case 2.1(b) End of Case 2.1.

1

2

ℓ

+1

ℓ′

k +1 1′k′

LN

L̂N

LE

Fig. 4.44. Case 2.2.

CASE 2.2: n − 1 ≥ l + 2. By previous cases we may assume that
m − 1 ≥ k′ + 2, e(k + 1, k + 2; l) /∈ H, e(k + 1; l, l + 1) ∈ H and
S↓(k+2, l+1; k+3, l) ∈ H. If LE is closed, then we’re done by Case 1,
so we may assume that LE is open. By Case 2.1, we may assume that
e(k′; l′ + 1, l′ + 2) /∈ H. Then the turn T̂ on {e(k + 1; l, l + 1), S↓(k +
2, l+1; k′+1, l′+2), e(k′, k′+1; l′+1)} is in H and it is a lengthening
of T . End of proof of I for Case 2.2.

The proof of II for Case 2.2 is the same as the proof of II for Case
1.3 (a). End of proof for Case 2. □

Observation 4.12. All turn weakenings found in Lemma 4.10 are contained in Sector(T). □

Lemma 4.13. Let G be an m×n grid graph, and let H be a Hamiltonian cycle of G. Let F be a looping
fat path of G, anchored at some outermost small cookie C. Then F has an admissible turn T such that
Sector(T ) and the j-stack of A0’s following C are disjoint.

X

L

T2

Fig. 4.45(a). An illustration of
Case 1 with T2 southeastern.

X

L

T2

Fig. 4.45(b). An illustration of
Case 1 with T2 southwestern.

Proof. For definiteness, assume that C is a
small northern cookie, with L = R(k′−1, l′+1).
Let F = G⟨N [P (X,Y )]⟩ be the looping H
path following L, as in Lemma 4.7, with X =

R(k′, l′ − 1). Let
−→
K and eW , e1, ...es be as in

Lemma 4.7 as well. By Lemma 4.7, F has a
turn T1. By proof of Lemma 4.7, either T1 is a
northeastern turn with X as its northern leaf,
or it is not.

CASE 1: T1 is a northeastern turn with X as
its northern leaf. Then e1 is southern. By
proof of Lemma 4.8, T2 is either southeastern
or southwestern. In either case, we note that
Sector(T2) is south of the stack of A0’s. By
Lemma 4.8, T2 is admissible. End of Case 1.

CASE 2: T1 is not a northeastern turn with X as its northern leaf. By proof of Lemma 4.7, T1 is a
northeastern turn or T1 is a southeastern turn.

X

L

T1

Fig. 4.46(a). An illustration of Case 2.1.

0

0

X

L

T1

Fig. 4.46(b). An illustration of
Case 2.2. The line x = y in red.

CASE 2.1: T1 is a northeastern turn.
It follows from the proof of Lemma 4.7
that Sector(T1) is east of the stack of
A0’s, that both leaves of T1 are in F ,
and that neither leaf of T1 is an end-
box of P (X,Y ). End of Case 2.1.

CASE 2.2: T1 is a southeastern turn.
It follows from the proof of Lemma
4.7 that Sector(T1) is southeast of the
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stack of A0’s. More precisely, we can check that Sector(T1) is below the line y = x + (l′ − k′), and the
j-stack of A0’s is above the line y = x+ (l′ − k′). By proof of Lemma 4.7, we have that both leaves of T1

are in F , and that no leaf of T1 is an end-box of P (X,Y ). End of Case 2.2. End of Case 2. □

Now we are ready to give a proof of Lemma 3.13.

Lemma 3.13. Let G be an m× n grid graph, and let H be a Hamiltonian cycle of G. Let C be a small
cookie of G. Assume that G has only one large cookie, and that there is a j-stack of A0 starting at the
A0-type containing C. Let L be the leaf in the top (jth) A0 of the stack, and assume that L is followed
by an A1-type. Let X and Y be the boxes adjacent to the middle-box of the A1-type that are not its
H-neighbours. If P (X,Y ) has no switchable boxes, then either:

(i) there is a cascade of length at most min(m,n), which avoids the stack of A0’s, and after
which P (X,Y ) gains a switchable box, or

(ii) there is a cascade of length at most min(m,n) + 1, that collects L and avoids the stack of A0’s.

Proof. Suppose that P (X,Y ) has no switchable boxes. Then P (X,Y ) is contained in a looping fat path
F = G⟨N [P (X,Y )]⟩. By Lemma 4.13, F has an admissible turn T such that Sector(T ) and the j-stack of
A0’s are disjoint. Then, by Corollary 4.9(a), d(T ) ≥ 3. By Proposition 4.11, T has a weakening µ1, ..., µs.
By Observation 4.12, µ1, ..., µs is contained in Sector(T ), and thus it avoids the j-stack of A0’s.

µs

+1

b

-1

-2

a +1 +2

LN

Fig. 4.47(a). LN+(0,−1)
is not an end-box.

+1

b

-1

-2

a +1 +2

LN

Fig. 4.47(b). After µs.

µs

+1

b

-1
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-1 a +1
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YX
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Fig. 4.48(a). LN+(0,−1)
is an end-box.

+1

b

-1

-2

-1 a +1

LN

YX

L

Fig. 4.48(b). After µs.

For definiteness, assume that T is northeastern with northern leaf LN = R(a, b) and that µs is the move
LN 7→ L′N or the move L′N 7→ LN . By Corollary 4.9(b), LN ∈ N [P ] \ P and LN + (0,−1) ∈ P . Note
that we must have S→(a, b − 1; a + 1, b − 2) ∈ H, e(a, a + 1; b) /∈ H and e(a + 1; b − 1, b) /∈ H. Now,
either LN + (0,−1) is an end-box of P or it is not. If the latter then, e(a; b− 1, b /∈ H). Then, after µs,
LN+(0,−1) ∈ P (X,Y ) is switchable. The fact that s ≤ min(m,n), follows immediately from Proposition
4.11. Thus, in this case, (i) holds.

Suppose then, that LN + (0,−1) is an end-box of P , say Y . This implies that e(a; b− 1, b) ∈ H, that
F is northern, and that L = LN +(−1,−3). Then µs can be followed by Y +(−1, 0) 7→ Y , L+(0, 1) 7→ L,
which collects L. To check the length of the cascade, first we note that b + 1 ≥ 4, and that the eastern
leaf of T has x-coordinate at least 5. It follows that |T (T )| ≤ min(m,n)− 4. It follows from the proof of
Lemma 4.10 that T has a weakening of length at most min(m,n)− 4 + 3. Since we need two additional
moves after µs to collect L, the length of the cascade is at most min(m,n)− 4 + 3 + 2 = min(m,n) + 1
moves. Thus, in this case, (ii) holds. □
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