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Abstract

An m x n grid graph is the induced subgraph of the square lattice whose vertex set consists of all
integer grid points {(4,7) : 0 <i <m, 0 < j <n}. Let H and K be Hamiltonian cycles in an m x n
grid graph G. We study the problem of reconfiguring H into K, e where the Hamiltonian cycles
are viewed as vertices of a reconfiguration graph e, using a sequence of local transformations called
moves. A box of G is a unit square face. A box with vertices a, b, ¢, d is switchable in H if exactly two
of its edges belong to H, and these edges are parallel. Given such a box with edges ab and c¢d in H,
a switch move removes ab and cd, and adds be and ad. A double-switch move consists of performing
two consecutive switch moves. If, after a double-switch move, we obtain a Hamiltonian cycle, we say
that the double-switch move is valid.

We prove that any Hamiltonian cycle H can be transformed into any other Hamiltonian cycle K via
a sequence of valid double-switch moves, such that every intermediate graph remains a Hamiltonian
cycle. eMoreover, assuming n > m, the number of required moves is bounded by mn?.e
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Introduction

An m x n grid graph is the induced subgraph of the square lattice whose vertex set consists of all integer
grid points {(4,7) : 0 < i < m, 0 < j < n} with edges between vertices at distance 1. We call the
unit-square faces of the square lattice boxes. A Hamiltonian path (cycle) of a graph G is a path (cycle)
that visits each vertex of the graph exactly once.

The question of whether an m xn grid graph has a Hamiltonian path
was first studied by Itai et al. in [5]. They showed that for an m x n grid
graph to have a Hamiltonian cycle, it is necessary and sufficient that at
least one of m and n is even. Chen et al. gave an efficient algorithm to
construct Hamiltonian paths in rectangular grid graphs [2]. A solid grid
graph is a grid graph without holes, i.e. each bounded face of the graph
is a box. Umans and Lenhart [17] gave a polynomial-time algorithm to Fig. L1. A Icomplex Hamiltonian
find a Hamiltonian cycle in solid grid graphs, if one exists. cycle on an 8 x 6 grid graph.

Given any two Hamiltonian cycles H and K, the reconfiguration
problem asks whether it is possible to transform H into K step-by-step, so that each intermediate step
is also a Hamiltonian cycle of G. Nishat and Whitesides [13] introduced the “flip” and “transpose”
moves described below, and a complexity measure called “bend complexity” for Hamiltonian cycles in
rectangular grid graphs. Roughly, a 1-complex Hamiltonian cycle is one in which every vertex of G is
connected to the boundary via a straight line. They prove that using these two moves, it is possible




to reconfigure any pair of 1-complex Hamiltonian cycles in G into one another. e Equivalently, the
reconfiguration graph of 1-complex Hamiltonian cycles in rectangular grid graphs is connected.e
We dispense with the need for bend complexity constraints, proving the connectivity of reconfiguration
graph of all Hamiltonian cycles in rectangular grid graphs, by using a more general move, which we call
a double-switch move.
XY Let H be a Hamiltonian cycle of an m x n grid graph G.
A box in G with vertices a, b, ¢, d is considered switchable
in H if it has exactly two edges in H, and these edges
are parallel. Let abcd be a switchable box with edges ab
and cd in H. We define a switch move on the box abed
in H as follows: remove edges ab and cd and add edges
be and ad. If X is a switchable box of in H, we denote
Fig. 1.2. Illustration of each switch of a general a switch move on X by SW(X)
double-switch move in a 4 x 5 grid graph. A double-switch move (or simply a move) is a pair
of switch operations where we first switch X and then find another switchable box Y and switch it, and
denote it by X — Y. If, after a double-switch move, we obtain a new Hamiltonian cycle, we call the
move a valid move. /
Let X = abed and Y = dcef be boxes sharing the edge cd of G. Assume I v ﬁ‘p
that the edges ab, fd,dc and ce belong to H, and that the edges fe,ad and bc aé
do not. A flip move consists in removing the edges fd,ce and ab, and adding l l
the edges ad,bc and fe. Effectively, this is the same as first switching X, and a"—‘b
. . . Fig. 1.3. A flip move.
then switching Y. See Figure 1.3.
b e b e Consider the four boxes X = abed, Y = cbef, Z = cfgh and

fo—oe

(1 Qe a . . .
x|y transpose x| v W = dchi that are incident on the vertex c. Note that X and
J . c s Y share the edge c¢b, Y and Z share cf, Z and W share ch, and
w7 wl z W and X share cd. Assume that the edges ab, be, ef, fc, cd and
i  e—ag ie g hg belong to H and that the edges ad, bc,ch and fg do not. A

h h

Fig. 14, A transpose move. transpose move consists in switching X and then switching Z.

See Figure 1.4.

Nishat in [10] showed that flip and transpose moves are always valid. The more general double-
switch moves are sufficient for constructing algorithms that reconfigure arbitrary Hamiltonian cycles in
grid graphs. This comes at the added cost of verifying the validity of each move. We provide such
reconfiguration algorithms and prove the existence of all required moves.

Theorem. Let H and K be any two Hamiltonian cycles in an m x n grid graph G with n > m. Then
there exists a sequence of at most n?m valid double-switch moves that reconfigures H into K.

See [1] for an illustration. e In particular, this yields an explicit mn? upper bound on the diameter of the
reconfiguration graph of Hamiltonian cycles in m x n grid graphse. An analogous result for Hamiltonian
paths is treated in [7]. The extension makes use of two additional moves beyond the double-switch: the
switch move and the backbite move, the latter used to relocate the endpoints of a path and originally
introduced by Mansfield [9]. For a description of the backbite move, see Appendix A.2.

Scope and extensions. In Section 4 we will
use the condition that the boundary is rectangu-
lar to prove the theorem. This assumption cannot
be relaxed to include all general solid grid graphs.
For example, neither Hamiltonian cycle in Figure
1.5. admits a valid double-switch move, so it is not

Figure 1.5. A solid grid graph shaded green, with two distinct possible to reconﬁgure one into the other through

Hamiltonian cycles frozen under the double-switch move. double-switch moves. While we believe there may

be finer classes of graphs between rectangular grid graphs and solid grid graphs that can be reconfigured

by the double-switch move, it seems likely that such classes would require imposing boundary conditions
on general solid grid graphs.

We conjecture that the double-switch move should also suffice to reconfigure Hamiltonian cycles in
three-dimensional rectangular grid graphs, although we do not yet have a proof. By a three-dimensional
rectangular grid graph we mean the induced subgraph of the cubic lattice whose vertex set is {(, 7, k) :
0<i<m, 0<j<mn, 0<k< p} with edges between vertices at distance one. The arguments in this
paper rely on Jordan’s curve theorem, which has no direct analogue in three dimensions. Thus, if this
conjecture is true, the proof would seem to require different techniques.

Applications and related work. A self-avoiding walk is a walk in a lattice where every vertex is



unique. A Hamiltonian path in a grid graph is an example of a self-avoiding walk. Madras and Slade in
[8] present a comprehensive and rigorous study of self-avoiding walks. One application of the theorem
is in chemical physics, drawing from the theory of self-avoiding walks. Researchers in [16], [6], [4], and
[9] use Monte Carlo methods to study statistical properties of polymer chains, which they abstracted as
cycles and paths in the cubic lattice.

They use self avoiding-walks to model how
a flexible polymer chain is arranged in a lig- |J_I—’ ﬂ :’
uid solution. A polymer chain’s concentra- _’_\
tion is the fraction of vertices of the lattice I E _I—
that are occupied by the vertices (monomers)
of the polymer. The authors consider max- :\—|_\_ —
imally concentrated polymers (high density |_ _I_\_’E_I_
polymers), where all the space is occupied by
the polymer. These can be naturally repre- Figure I.6. Two distinct Hamiltonian cycles on 10 x 10 grid graphs.
sented as Hamiltonian paths or cycles. They
view the set of Hamiltonian cycles in a rectangular grid graph as the state space of a Markov chain, with
the double-switch move being the transition mechanism. Given a Hamiltonian cycle (a state in the state
space), we choose two switchable boxes at random and perform a double-switch move. If the move is
valid, then the new state is the resulting Hamiltonian cycle. Otherwise, we remain at the initial state and
choose another pair of switchable boxes. The idea is that after a sufficiently large number of transitions,
we obtain a set with many different states, which represents a reasonable random sample of the entire
state space. The validity of these methods requires uniform random sampling of the entire state space,
which in turn requires the Markov chain to be irreducible (i.e., any Hamiltonian cycle can be reconfig-
ured into any other through a sequence of valid moves). The authors in [16, 6, 4, 9] assume irreducibility,
but do not prove it. For a more detailed discussion on Monte Carlo methods and reconfiguration of
self-avoiding walks, see Chapter 9 in [8].

Nishat, Whitesides, and Srinivasan extended the result of [13] to 1-complex Hamiltonian paths in
rectangular grid graphs [12, 11, 15], and to 1-complex Hamiltonian cycles in L-shaped grid graphs [14].
The authors define a 1-complex s,t Hamiltonian path to be a 1-complex Hamiltonian path that begins
and ends at diagonally opposite corners s and t of a rectangular grid graph. We note that the results
[12], [11], and [15] are extended to arbitrary s,t Hamiltonian paths in [7].

The rest of the paper is organized as follows. In Section 1 we introduce notation and definitions, prove
some lemmas about the structure that a Hamiltonian cycle imparts on a grid graph, and some other
lemmas characterizing the validity of double-switch moves. In Section 2, we state the algorithm required
for the proof of the main result, and show that it depends on the existence of a further two algorithms,
the MLC and the 1LC. In Section 3 we prove the ML.C and 1LC algorithms. The 1LC proof depends on
a lemma whose proof takes up all of Section 4.

1 Preliminaries

A grid graph is a subgraph of the integer grid Z2. A lattice animal is a finite connected subgraph of Z2.
A Hamiltonian path (cycle) of a graph G is a path (cycle) that visits each vertex of the graph exactly
once. Assume that G has a cut vertex v. Then G cannot have a Hamiltonian cycle. Let Gy, G2 be the
components of G\ v. Let H; be a Hamiltonian path of G\ G; and let Hy be a Hamiltonian path of G\ G
such that H; and Hs have v as an end-vertex. Then a Hamiltonian path H of G can be obtained by
concatenating H; and Hsy. Since H; and Hs are smaller than H they are easier to find and to reconfigure.
It follows that a graph that cannot be decomposed in this manner must be 2-connected. Thus, from here
on, we will restrict our attention to 2-connected grid graphs.

Definitions. Let G be a grid graph and let H be a Hamiltonian cycle of G. We denote the set of boxes
of a grid graph G by Boxes(G). We will need some definitions to navigate G and H. Position G in
the first quadrant so that its westernmost vertices have x-coordinate 0 and southernmost vertices have
y-coordinate 0. We use the z and y coordinates to describe a rectangle in the graph and denote it by
R(kq, ko;l1,l2). This rectangle corresponds to the Cartesian product of the intervals (k1, k2) and (11, 12).
We will denote a box of G by R(k,l) where k and [ are the coordinates of the corner of the box that is
closest to the origin. That is, R(k,l) = R(k,k + 1;1,1 + 1).

We specify a vertex v by v(k,l), where k and [ are the vertex coordinates. We denote a horizontal
edge e by e(ki, ko;l1), where ki, ko are the x-coordinates of the vertices of e and I; is the y-coordinate
of the vertices of e. Similarly, we write e(k1;l1,l2) for vertical edges. It will be convenient to use the



notation {u,v} to describe edges of G and the notation (u,v) to describe directed edges of G. For a
directed edge e = (u,v), u is said to be the tail of e and v is said to be the head of e.
Let G’ be a subgraph of G. Then we write G’ 4+ (x,y) to denote the translation of G’ by (z,y).

Theorem 1.1. Jordan’s Curve Theorem for polygons (JCT). A polygon @ divides the set of points of
the plane not on @ into two disjoint subsets Int (for “Interior”) and Ext (for “Exterior”) that have @Q as
a common boundary and are such that any two points within a subset can be joined by a path that does
not intersect (Q while any path joining a point of Int to a point of Ext must intersect Q. O

n-1

We record here a useful consequence of Jordan’s curve theorem.

Corollary 1.2. Let p; and ps be points on the plane not on Q. If the
segment [p1, po] intersects @ exactly once at a point g, where ¢ is not a
vertex of (), then one of p; and ps is on Ext and the other is on Int. [J

0 m-
Fig. 1.1. A 6x5 grid graplh.
Recall that a solid grid graph is a grid graph without holes. Note that an

m x n grid graph is a solid grid graph such that the outer boundary is an (m — 1) x (n — 1) rectangle,

with corners at (0,0), (m —1,0), (m —1,n — 1), and (0,n — 1). We call this rectangle the boundary of G.

Definitions. Let G be an m x n grid graph and let X7, X5 be two distinct boxes of G. If X; and X5
share an edge of G, we say that X; and Xy are adjacent. Define a walk of boxes in G to be a sequence
X1, ..., X, of boxes in G, not necessarily distinct, such that for all j € {1,2,...,r — 1}, X, is adjacent to
X1 or X; = X1, We denote such a walk by W(X;, X,.). For each j € {1,...,r — 1}, we call the edge
of G that X; and X, share a gluing edge of W (X1, X,), whenever X; and X, are distinct boxes.
If for all 4,5 € {1,2,...,r} with ¢ # j, X, is distinct from X;, we call the sequence a path of bozes in
G and denote it by P(X1,X,). A cycle of boxes in G is a walk X1, ..., X,. such that X; = X,. and for
i,j S {1, ey T — 1} Xl 7é Xj.

eThe rest of Section 1 contains definitions and technical results used in Sections 2-4. Our reconfiguration
strategy relies on controlling which edges belong to the Hamiltonian cycle by applying moves. To analyze
when moves can add or remove specific edges while preserving the Hamiltonian property, we need to
understand how the Hamiltonian cycle H decomposes the grid graph into components that we call H-
components. This decomposition is introduced in Section 1.1. In section 1.2 we define the Follow-the-wall
construction and use it to build walks of boxes that respect the structure of H, called H-walks. H-walks
are used extensively in many proofs throughout the rest of the paper. In Section 1.3 we prove some basic
properties of H-components; In section 1.4 we give a more detailed description of double-switch moves
and prove a lemma about their validity. e

1.1 The H-decomposition of GG

Definitions. A walk (of length r) in a graph is an alternating = seserieiiin. :
sequence vgeivies....e, v, of vertices and edges. Define a lazy :
walk to be sequence of edges and vertices where every edge is in
between two vertices that are its endpoints, and in between every
two edges there is a vertex or multiple copies of a vertex. That
is, a lazy walk is roughly a walk in which consecutive vertices
can be the same, allowing the walk to remain at a vertex for one

or more Steps without traversing any edges. Fig. 1.2. Anm x nAgrid graph G shaded blue,
. . a subgraph H of G in blue, BBoxes(G) shaded
Let G be an m x n grid graph and let H be any subgraph in areen, an H-cycle in G dotted red.

G. Let Xy, X5 be two adjacent boxes of G. If E(X;) N E(X2) N

E(H) = 0, we say that X; and Xs are H-neighbours or X is H-adjacent to Xs5. Define an H-walk of
bozes in G (H-walk) to be a sequence X1, ..., X, of boxes in G, not necessarily distinct, such that for all
Jje{L,2,..,r =1}, X; is an H-neighbour of X, or X; = X .

If for all 4,5 € {1,2,...,r} with i # j, X; is distinct from X, we call the sequence an H-path of boxes
in G and denote it by P(X1,X,). Let r > 4. Define an H-cycle of bozes in G (H-cycle) to be a set
X1, X2, ..., X, = Xy of boxes in G such that for each j € {1,2,...,r — 1}, X is an H-neighbour of X,
and the boxes X, ..., X,_1 are distinct. Let C be an H-cycle of boxes in G. We note that every box of
C has exactly two gluing edges. Proposition 1.3 will show that if H is a Hamiltonian cycle of G, then
there are no H-cycles of boxes in G.

Define a boundary box of G to be a box that is incident on the boundary of G but that is not a box
of G. denote the set of boundary boxes of G by BBozes(G). Define G_; to be the graph with vertex



set V(G_1) = V(G) U V(BBoxes(G)) and edge set F(G_1) = E(G) U E(BBoxes(G)). We extend the
definitions of H-walks, H-paths and H-cycles to G_;. See Figure 1.2 for an illustration.

Proposition 1.3. Let G be an m x n grid graph and let H be
Hamiltonian cycle of G. Then every H-cycle in G_; is contained
in BBoxes(G).

Proof. By way of contradiction assume that there is an H-cycle
C in G_q with boxes X1, X5,..., X, = X; that has a box X;
contained in G. Let ¢y, ¢a, ..., ¢, = ¢1 be the centers of the boxes
of C. That is, if X; = R(k,l) then ¢; = (k+ 1,14 1). Note that
for each j € {1,2,...,7 — 1}, [¢}, ¢j+1] intersects the gluing edge

Fig. 1.3. P(a,b) in blue, gluing edges of C' in of X; and X;; and [Cj, cj+1] intersects no other edge of G_;.

orange, Q in dark green, ¢’ shaded in light green. We will first show that the set of segments [cj,cj11] is a

non-self-intersecting polygon Q. Since ¢; = ¢, @ is a polygon.

For a contradiction assume that @ is self intersecting, so there are points c;_1, ¢j, ¢j41 and ¢; such

that the segments [c;_1,¢;], [¢j, ¢j+1] and [c;, ¢;] are edges of Q. But then X; has three gluing edges, a
contradiction.

By JCT, @ divides the plane into two subsets Int and Ext such that any two points within a subset
can be joined by a path that does not intersect () while a path joining a point of Int to a point of Ext must
intersect Q). Let V(Int) be the vertices of G_; contained in Int and let V(Ext) be the vertices of G_;
contained in Ext. Note that any box of C' contains at least one vertex in V' (Int) and one vertex in V(Ext),
so both sets are nonempty. In particular, this is true for X;. For definiteness, assume that a € V(X;)
is contained in V(Int) and b € V(X;) is contained in V(Ext). By JCT, V(Int) U V(Ext) = V(G) and
V(Int) NV (Ext) = . Consider the subpath P(a,b) of H. By JCT again, there is an edge ¢ € P(a,b) C H
intersecting ) at some segment [c;,c;11]. But then e is a gluing edge of C, so e cannot belong to H. O
Let G be an m x n grid graph and let H be a Hamiltonian cycle of G. Let X1, ..., X, be a set of boxes in
G such that for any ¢,j € {1,2,...,r}, there is an H-path P(X;, X;) between X; and X contained in G.
We call X; and X the end-bozes of P(X;, Xj). We say that X; and X; are H-path-connected in G and
the set of boxes {X1, ..., X, } is an H-path connected set of boxes in G. If the set {X1, ..., X;-} contains no
cycles of boxes we call it an H-tree. A H-component of G is a maximal H-path connected set of boxes.

Corollary 1.4. A Hamiltonian cycle H partitions the boxes of G into H-path-connected H-components
which are maximal H-trees. In particular, if an H-path is contained in an H-component, that H-path is
unique. [

1.2 The follow-the-wall construction

Definitions. Let G be a graph. A trail is a walk in G where all edges are distinct. A trail where the first
and last vertices coincide is called a closed trail or a circuit. A directed walk (of length s) is an alternating
sequence vpe1v1€s....esUs of vertices and directed edges such that for j € {1, ..., s}, the directed edge e;
has tail v;_; and head v;. A directed trail is a directed walk where all directed edges are distinct. We

will use the notation I_(> to denote directed trails.
Let the box X be incident on a directed edge (u,v) of the integer grid. Then X and its vertices
not incident on the edge e; are either on the right or on the left side of (u,v). See Figure 1.4 for an
illustration and Appendix A.1 for a more precise definition of a box being on the right or left side of a
directed edge. Note that if X is on the right side of (u,v), then the other box incident on (u,v), say X',
is on the right side of (v, ).
Let H be a cycle in an m x n grid graph
G. Let K = v1,...,v541 be a subpath of H.
We orient K to obtain a directed trail ? = w w
(V1,12), vy (Vsy Vsp1) = €1...., €5. We will use

to construct an H-walk of boxes in G_1 Xi Xi
that we will call the right H-walk induced Fig. ) (i). wis Fig. 1 (i), w#u Fig. 1.4 (li]{i). w is
by f() and denote it by W? (XL, X right of e;. is collinear with e;. left of e;.

,right »EET

where X; and X, are the end-boxes of
W right(X 1, Xr). Roughly, W right (X1, X,) will be the walk of boxes that a “walker” would encounter

as they followed along the side of I_(> when starting on the right side of the first edge e; of ? We will
call this construction the follow-the-wall construction (FTW). This is very similar to the well-known
hand-on-the-wall maze-solving algorithm.



Let X be the box of G_; on the right of the edge e; of Rz and let e; be the 5t edge of I_g Then
X = X, is the first box of the H-walk. Let e; = (u,v), e;+1 = (v,w) and let X; be on the right of the
edge e;. There are three possibilities for the position of w with respect to (u,v): w is right of (u,v),
w # u is colinear with (u,v) and w is left of (u,v). For the last case define €} = (v,v’) to be the edge in
G -1\ H that is colinear with e; and set e = (v, v). See Figure 1.4.

(i) w is right of e;. Then X, is on the right of the edge e;41. Note that in this case, the walk has a
repeated box since X; = X;41.

(ii) w # u is collinear with e;. Then X;; is on the right of the edge ej41.

(iil) w s left of e;. Then X, is on the right of the edge €} and X2 is on the right of the edge ;1.

We say that the edge €;11 adds to the H-walk Wy right(Xl’XT')

o Y Yo .the box .)-?H_l, in cases (i) and (ii), and boxes X;;+1 and X;io

in case (iii). If es adds more than one box to Wy lright(Xl, X,)

e( then we will adopt the convention that X, is the last box added

‘ es by the edge es and that all the boxes added by each edge of e;,

Ya Y5 AN Yo j €{1,...,s} are on the right side of e;. Note that this convention

€1 o is necessary for the box X;;1 in Case (iii). We remark that the

> > first edge e; can only add the single box X;. The left H-walk
Yi Ys Ys W2 et (X1, X)) induced by K can be constructed analogously.

Let H denote either a path or a cycle in G. Let K(H) be

i ) the set of all directed subtrails of H. We can view the FTW
Fig. 1.5. A subtrail ? = ?(el, es) of a . . .

Hamiltonian cycle of a grid graph @ in blue; construction as a function ® that assigns an H-walk to elements

&(F, right) = Y1Y2Y3YsYeYs shaded orange of L(H) x {right, left}. We will take a closer look at H-trails in

_and ‘I’(évleft) = YaYsY5Ys shaded green; the case where H is a Hamiltonian cycle of G.
silhouette in gray following the wall along es.

Let H = vy, ...,v,,v; be a Hamiltonian cycle in G. Orient H as a directed circuit ?H We observe that
it is possible to choose a starting edge e; = (vj7 ij) of ?H so that the directed circuit K = e;,ej41,
..., €j—1 is such that Boxes(fl)([_%H, right)) U Boxes(<I>(l_(>H7 left)) = Boxes(G_1). We record an equivalent

statement for reference as Observation 1.5 below. From here on, all circuits ?H will be assumed to
satisfy Observation 1.5.

Let H = vy, v9,...,v,,v1 be a Hamiltonian cycle in G. Note that any subtrail of ?H is completely

determined by its first and last edges. Therefore, it will be fitting to use the notation K (es, e;) to denote
the unique subtrail starting at edge e; and ending at edge e;.

1.3 Properties of H-components

Observation 1.5. Let G be an m x n grid graph and let H be a Hamiltonian cycle of G. Then for every
box X in G_; there is an edge e of K g and side € {right, left} such that e adds X to W}—%H side*
Lemma 1.6. Let G be an m x n grid graph and let Q = vq, ..., v,,v; be any cycle in G and let U be the
region bounded by @. Orient the edges of G into the directed circuit K¢g = (v1,v2), ..., (Vr,v1). Then

Boxes(@(?Q, right)) C U and Boxes(@(?Q, left)) € G_1 \ U iff ®((vy,v2),right) is a box of U.
Proof. This follows from Corollary 1.2, the definition of FTW, and induction on the edges of ?Q. O

Note that, by JCT, H divides the boxes of G_; into the disjoint sets int(H) and ext(H ), where int(H)
is the bounded region.

Proposition 1.7. Let G be an m x n grid graph and let H be a Hamiltonian cycle of G. Then int(H)
is an H-component of G.

Proof. Let H = vy, ..., v, v and, for definiteness, assume that ®((vq, v2), right) € int(H). By Lemma 1.6,
Boxes(@([_gH,right)) C int(H) and Boxes(@(?H,left)) C G_1\int(H) = ext(H). Since H is contained in
G and H is the boundary of int(H), int(H) is contained in G. We check that int(H) is H-path-connected
and maximal.

Consider any box Z € int(H). By Observation 1.5, there is an edge e € ?H such that e adds Z to

@(?HJeft) or e adds Z to @([_()H,right). The former implies that Z belongs to ext(H), contradicting



that Z € int(H). It must be the case that Z € Boxes(q)(l_gH,right)), which is H-path connected. Note
that this also shows that int(H) = Boxes(q)(l_()H, right)).

To see that int(H) is maximal, we note that G C int(H) Uext(H) and that int(H) Next(H) = 0, so
int(H) cannot be extended. O

Corollary 1.8. Let G be an m xn grid graph, H = vy, ..., v, v1 be a Hamiltonian cycle of G, and assume
that ®((v1,v2),right) is a box of int(H). Then Boxes(q)(f()H, right)) = int(H) and Boxes(@(f()H, left)) =
ext(H). O
Let G be an m x n grid graph and let H be a Hamiltonian cycle of G. Let Jy, Jp,...,Js be the H-
components of G, where Jy = int(H). It follows from Proposition 1.7 that BBoxes(G) = G_1 \ G is
contained in ext(H) and that all other components Ji, ..., J; of G are contained in ext(H) \ BBoxes(G).
We write this as Observation 1.10 below for reference. We call the H-components Ji, ..., Js cookies of G.
If a cookie J has more than one box, we call J a large cookie. Otherwise, we say that J is a small cookie.
Let J be a cookie of G. We define a neck of J to be a box Ny of J that is incident on a boundary
edge ey of G with e; ¢ H. We call e a neck-edge of J. Note that the other box incident on e; must be
in G_1 \ G. With these definitions, Lemma 1.6 has the following corollary:

Corollary 1.9. Let G be an m x n grid graph and let H be a Hamiltonian cycle of G, and let Jy, ..., J;
be the H-components of G. Then every edge of H is incident on a box of Jy and a box of G_1 \ Jp. O

Observation 1.10. Let J be an H-component of G. Then J C int(H) or J C ext(H).

Corollary 1.11. Let X and Y be boxes of an H-component J. Then X and Y are on the same side of
H-

Lemma 1.12. Let G be an m x n grid graph, let H be a Hamiltonian cycle of GG, and let J be a cookie
of G. Then J has a unique neck.

Proof. If J only has one box, we are done, so assume that J has more than one box. Let Z be a box of

J. By Observation 1.5, we may assume, WLOG, that Z is on the left of e, € [_(>H. If no edge is incident
on Z, we choose one of the four neighbours beside it.

We claim that there exists a subtrail ?(ez,etﬂ) of ?H such that
@(?(emet),left) is contained in J but @(?(ez,etﬂ),lef‘c) is not. As-
sume for contradiction that for every subtrail of ?H starting at e,, Z 4 e
@(?(emej),left) is contained in J, where j € {z + 1,...,z}. But then
<I>( H,left) is contained in J C Boxes(G), contradicting that @(?H, left)

contains the boxes of G_1 \ G. It follows that e;41 adds the first box Y of e ¥ N,
@(?(627 €t41)s left) that is not contained in J. Note that, by definition of ol
H-component, Y must belong to G_1 \ G. (Since Y is H-adjacent to the v
box X preceding it, but Y does not belong to J, it must be the case that Y Fig. 1.6. @(?(ebeﬁ)yle&)

is not in G). Let X be the box of J preceding Y in @(?(ez, er41), left). We shaded in blue.
have that X and Y are H-adjacent and share a boundary edge e; of G that is not in H. By definition
of neck of an H-component, X = N.

To see that the neck of J is unique, assume for contradiction that J has at least two necks, N; and
N;. By Corollary 1.8, ext(H) is H-path-connected. Let N and N} be the boxes in BBoxes(G) that are
adjacent to Ny and Na, respectively. Then there is an H-cycle P(N7y, N}), P(N2, N1) in G_; that is not
contained in BBoxes(G), which contradicts Proposition 1.3. [

Lemma 1.13. Let G be an m x n grid graph, let H be a Hamiltonian cycle of GG, and let J be a cookie
of G with neck N;. Orient H and let (vg,vy41) and (vy—1,vy) be edges of Ny in H, where {vg, vy} is a

boundary edge of G. Then V(J) = V(?((vw,vﬁ_l), (vy—1,vy)))-

Proof. Let I_gl = ?((vm,vzﬂ),(vy_l,vy)) and [_(}2 = ?((vy,vyﬂ),(vz_l,fuz)), and note that ?H =
?1, ?2. For definiteness, assume that Ny = ®((vs, vy41), right).

Let v, € V(J). Assume for contradiction that v, ¢ K;. Then v, € ?2. Let Z be a box of J on
which v, is incident, and let e, be the edge of K5 containing v, that adds Z to @(?H, right). Note that
we used Corollary 1.11 here. By proof of Lemma 1.12, there is a subtrail ?(ez,et) of K g such that
@(T(}(ez, et),right) is contained in J but @(I_(}(ez, er+1),right) is not contained in J. (If no edge of H is



incident on Z we can just consider Kz(ez_l, et) instead.) Note that this implies that e; must add N; to

@(?(ez,et),right). Then e; = (vg, Ugt1) OF e = (Vy—1, Uy).

Vop1 Vo1 Let N’ be the neighbour of N; in G_; \ G. Note that N/ € <I>(R2
{NJ (€2, (Vg,Vg4+1)),right) and so ®(K (e, (vy, vgy1)) is not contained in J. Then
° it must be the case that e; = (vy—1, vy).
Ve—1 Uz Uy = Uytl . .
N Since e, € I—(>2 and e; = (vy—1,vy) € ?1, there must be some jy € {z,z +
Fig. 1.7. G_1\ G 1,...,y — 2} such that for each j < jo, ¢; € ?2, but ej,4+1 € ?1. It follows that
shaded in green. €jo+1 = (U:cvvarl) Or €j,4+1 = ('nylavy)

Note that if ejy11 = (vy—1,vy) then (vy_2,vy_1) = ej,. But (vy_2,v,-1) € ?1, contradicting e;, € ?2.
Then it must be the case that ej;41 = (g, Uz41). But then ®(K (e,,e;j,), right) contains ®(e;,, right),
which belongs to G_; \ G, contradicting that ®(K (e.,ej,),right) is contained in J. Thus we must have
that v, € ?1.

It remains to check that V(?l) C V(J). We will prove that ?1 CE(J). Forie{z,z+1,..,y—1}, let
e; = (vi,viy1). Note that if K(e,,e;) C E(J) then ®(K (e,,e;),right) C J. This follows by definition of
FTW and induction on the edges of K (e, e;).

We have that e, € ?1 N E(J). Assume for contradiction that there exists some jo € {z + 1,2 +
2,...,y — 3}! such that K (e, ej,) is contained in FE(J) but ?(6176]‘04’_1) is not. Since e;,+1 ¢ E(J),
we have that %ﬁ(ez,eh),righ‘c) is contained in J but ®(K (ey,ej,+1),right) is not. Let Z be the
first box of ®(K (eq,e€j,+1),right) that is not contained in J and let Z’ be the box preceding Z in
(b(l_()(ex,ejﬁl),right). The fact that Z € J and Z’' ¢ J are H-neighbours implies that Z' = N;. Since

€jo+1 adds Z to ®(K (e, ej,+1), right), ejo+1 = €g o €;,41 = (vy, vy+1). But both possibilities contradict
that jo € {z+ 1,z +2,....,y —3}. O

Let H be a subgraph of G. A box of G on vertices a, b, ¢, d is switchable in H if it has exactly two edges
in H and the edges are parallel to each other. eWe call e box of G with exactly three edges in H a leaf.e

Lemma 1.14. Let G, H and Jy,...,Js be as in Corollary 1.9. Then a large cookie has exactly one
box incident on a boundary edge of GG, namely its neck. Furthermore, the neck of each large cookie is
switchable.

Proof. First we show that a large cookie has exactly one box in incident on a boundary edge of G, namely
its neck. Let J; be a cookie. By Lemma 1.12, J; has a neck N;, and Ny, is incident on the boundary of
G. Suppose that there is another box X of J; that is incident on By. Note that X € G_1 \ Jy. Let e be
the boundary edge of X and let Y be the box in G_; \ G that is incident on e. Then e € H or e ¢ H.
Note that e ¢ H contradicts Lemma 1.12 so we only need to check the case where e € H. Suppose that
e € H. By Corollary 1.9, Y € Jy C G, contradicting that Y € G_1 \ G.

Now we show that the neck of each large cookie is a switchable box. Let X = R(k,!) be the neck of a
cookie J;. Let v(k,l) =a, v(k+1,1) =b,v(k+1,l+1) = c and v(k,l+ 1) = d. For definiteness, assume
that {a, b} is the neck edge of J;. Observe that we must have 0 < k < m — 1. It follows that {a,d} € H
and {b,c} € H. Since J; is not a small cookie {¢,d} ¢ H. Thus, X is switchable. OJ

1.4 Moves

Definitions. Let G be an m x n grid graph and let H be a Hamiltonian cycle of G. Let abcd be a
switchable box with edges ab and c¢d in H. A switch move on the box abed in H removes edges ab and
cd and adds edges bc and ad. Let X € G be a switchable box in H. We write Sw(X) to denote a switch
move.

A double-switch mowe is pair of switch moves where we first switch X and then find a switchable Y and
switch it. We denote a double-switch move by X +— Y. See Figure 1.9. If after a double-switch, we get
a new Hamiltonian cycle, then we call the move a valid move. We call X — X a trivial move.

Orient H as directed cycle vy, ...,v,,v1. Let X be a switchable box in H with edges e; = (vs, vs41) and
es = (vt,ve41). If vs is adjacent to v; in G, we say that e; and es are parallel; and if vs is adjacent to
vt11 in G, we say that e; and e are anti-parallel. Similarly, we call the box X a parallel (anti-parallel)
box if its edges are parallel (anti-parallel).

1®(ey—1,right) = Ny, so jo <y—3



Let J be a large cookie with neck N;. We call a valid flip move Ny — N’ a neck-shifting flip (NSF) move.
Observe that after a NSF move, the large cookie J necessarily becomes the large cookie (J U N’)\ Ny,
with new neck N/.

We define a cascade to be a sequence of moves pi1, ..., - such that for 0 < j <r —1:

1) pq is valid,

2) if pa, ..., p; have been applied then p;4q is valid, and

3) the sequence may contain NSF moves but does not otherwise create any new cookies.

Let H be a Hamiltonian e-cycle of an m x n grid graph G and let J be a cookie of H with neck N .
Consider a cascade pi1, ..., it where p,. is the nontrivial move Z — N;. We say that the cascade uq, ..., tr
collects the cookie J. Note that all double-switch moves are invertible. For non-adjacent boxes X and
Y |, the moves X — Y and Y — X. When X and Y are adjacent with X switchable and Y a leaf (i.e.
X — Y is a flip move), X must be switched first before Y becomes switchable, so the order matters.

Lemma 1.15. Let G be an m x n grid graph and let H be a Hamiltonian cycle of G. Orient H as a
directed cycle vy, ..., v, v1. Then every switchable box of H is anti-parallel.

Proof. Assume for contradiction that there is a box X in H with parallel edges e; and es. For definiteness
assume that X = R(k,1), e; = e(k,k+1;1), ea = e(k,k+1;14+1) and that Boxes((b(?H,right)) = int(H).
But then X = ®(eq,right) € int(H) and ®(eq,right) € int(H), contradicting Corollary 1.9. O

We will show below that if we switch a switchable box Vs+1 &) Vs+1

of H we get a cycle H; and a cycle Hy. We define a : :
(H., H3)-port to be a switchable box of H; U Hy that has
one edge in H; and the other in Hs.

v U v1S e

Lemma 1.16. Let G be be an m x n grid graph and let " "

. . . . t+ t+
H be a Hamiltonian cycle of G. erent H asa dlrect.ed Fig. 18 (a). A directed Fig. 18 (b). Cycles
cycle vy, ...,v.,v1. Let X be a switchable box of H with Hamiltonian cycle H, H, and Ha, obtained
edges el = ('U57 Us+1) and ey = (Ut7 Ut-‘rl)) with s+ 1 < ¢. X is switchable, e; and from H after Sw(X).

ez are anti-parallel.

(i) Sw(X) splits H into two cycles, H; and Ha.

(ii) Suppose we apply Sw(X). If Y is an (H;, Ha)-port then X — Y is a valid double-switch move.
Proof. Removing edges e; and es splits H into two disjoint paths Py = P(vs41,v:) and Py = P(vig1, vy),
{vr,v1}, P(v1,vs) = P(vt41,0s). By Lemma 1.15, e; and ey are anti-parallel. Then we have that v; is
adjacent to vs1 and vs4q is adjacent to v;. Now ; adding €] = (vs41,v:) gives a cycle Hy = Py, e}; and
adding e}, = (vs, ve+1) gives a cycle Hy = Ps, e). End of proof for (i).

The proof of (ii) is essentially the same as the proof for (i), so we omit it. O

}VL& }Vﬁ% Hamiltonian e-cycles. Let G be an m x n grid

graph, let H be a Hamiltonian cycle of G and let
e be an edge of H that lies in the boundary of

x [y XY x| v G. We call the path H' = H \ e a Hamiltonian e-
cycle of G. We remark that all the definitions and
results about the case where H is Hamiltonian cy-
cles of G translate immediately to the case where

Fig. 1.9 (a). A Fig. 1.9 (b). Heyare Fig. 1.9 (¢). A Hamil- [/ i 5 Hamiltonian e-cycle of G. We may just

Hamiltonian e-cycle and Hpaen after tonian e-cycle H' Lo )
H on a4 x 4 grid; switching X. Note after switching Y. add back the edge e incident on the end-vertices
X is switchable. that Y is an of the H' to obtain the cycle H. All relevant

(Heyete, Hpau)-port. properties we have observed remain unchanged.

Section 2 contains algorithms we can use to reconfigure one Hamiltonian cycle (e-cycle) into another.
Proofs of existence for the algorithms are in Section 3. Section 4 contains proofs of auxiliary results
required in Section 3.

B
1.5 Appendix 7
P
A.l. Let A= (z1,y1), B = (x2,y2) and P = (x,y) be points in the plane
that are not collinear. We define (zo — x1,y2 — y1) as the direction of —
4l
the vector ﬁ Then the direction of the normal 7 to z@, obtained by d
rotating E by —%,1is (y2 — y1, 1 — x2). We want to know whether the
~
dL
A

Fig. 1.10. P on the right of zﬁ



H
point P is on the side of zﬁ toward Xhich T is pointing. Let 7 = ﬁ Let d* be the component of 7
that is perpendicular to zﬁ and let dll be the component of 7 that is parallel to z@ . Note that:

7 = (@l +a) 7 = a7 = (-1, y—11)- (o, 21 —22) = (@—21) (o —92)+ (y—1) (21 — ).

Point P is on the right of ABitd -7 > 0, and on the left if q-7 < 0. Let e = (u,v) be an edge of
a grid graph G, where u = v(ky,l1), v = v(k'g,lg). Let X be a box of the square lattice that is incident
on (u,v). We say that X is on the right of the edge (u,v) if there is a vertex w = v(k,1) in V/(X) \ V(e)
such that (k—ky,lo — 1)+ (I =11,k — k2) = 1 and we say that X is on the left of the edge (u,v) if there
is a vertex w = v(k,l) in V(X) \ V(e) such that (k — k1,lo — 1) + (I —l1,k1 — k2) = —

A.2. Let H be a Hamiltonian path v,...,v,. of an m xn vy oy

grid graph G, and let vs be adjacent to v, s # 2. If we _l
add the edge {v1,vs}, we obtain a cycle vy, ..., vs, vy, and e e

a path v, ..., v,. Now, if we remove the edge {vs_1,vs}, v1 s v G v

we obtain a new Hamiltonian path H = (I‘I\{’Us_l7 ’Us}) U Fig. I.11. An illustration of a backbite move.

{v1,vs}. This operation is called a backbite move. See Figure 1.11.

2 Reconfiguration algorithm for cycles and canonical forms

Definitions. Denote by G the induced subgraph of G on all the vertices with distance s or greater
from the boundary of G. Denote by R, the rectangular induced subgraph on vertices of G with distance
s from the boundary. Then R is the boundary of G5 and the edges of Ry are the boundary edges of G.

The main result stated in the Introduction is an immediate consequence of the slightly more general
theorem below. Its proof takes up the remainder of the paper.

Theorem 2.1. Let G be an m X n grid graph with n > m. Let H and K be two Hamiltonian cycles
or Hamiltonian e-cycles of G with the same edge e. Then there is a sequence of at most n?m valid
double-switch moves that reconfigures H into K.

The 3 x n and 4 X n cases were done by Nishat in [10], so from here on, we will assume that m,n > 5,
and that m and n are not both odd. First we will describe canonical forms for Hamiltonian cycles and
e-cycles. Then we show that we can reconfigure any two canonical forms into one another. Then we
show that any Hamiltonian cycle (e-cycle) can be reconfigured into a canonical form. Observing that
double-switch moves are invertible completes the proof. That is X +— Y followed by Y — X results in
no net change. More specifically, suppose we want to reconfigure a Hamiltonian cycle (e-cycle) H into a
Hamiltonian cycle (e-cycle) K. Let pq, ..., ux and vy, ..., vs be the sequences of moves that reconfigure H
and K into the canonical forms H.,, and K 4,, respectively. Then vy, vs_1,...,v1 reconfigures K4, into
K. Let ny, ...,m;: be the sequence of moves that reconfigures H.q, into K.q,. Then the sequence of moves
WLy eeey Mks Ty ooy Mty Vsy Vs—1, ---y V1 Teconfigures H into K.

Description of canonical forms. We shall write Hcan(m,n) to denote the set of canonical forms of
Hamiltonian cycles and e-cycles on an m x n grid graph. Then H € Hcan(m,n) if and only if H can be
constructed by the “Canonical Form Builder” algorithm described below.

Let t = L%J Let k1 = |m —n|+ 2 and k2 = |m — n| + 3. If min(m, n) is even, let D be the
Hamiltonian cycle of the 2 x k; grid graph Gt+1 If min(m, n) is odd, let D be any Hamiltonian cycle of
the 3 X ko grid graph Gyy1. Let U = DU UZ o Ri-
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X, 1

X1 1|
o X
O ©
X2 2]
Xo Jxol
Fig. 2.1(a). U with min(m,n) even. Fig. 2.1(b), Fig. 2.2(a). U with Fig. 2.2(b). A canonical
Dy in dashed yellow. A canonical form from U. min(m,n) odd. form from U. Do(H) in

dashed yellow.

We define (R;, R;+1) to be the set of all the boxes of G adjacent to both R; and R;,;. Now we can state
the Canonical Form Builder algorithm (CFB) that takes as inputs m and n and outputs an element of

Hean(m,n).

Step 1. Set ¢ = 0. Switch one of the 2(m — 3) 4+ 2(n — 3) switchable boxes of (Rg, R1) of the graph U. This
switch removes some edge, say ey, from E(Ry). If t = 0, stop. If ¢ > 0, go to Step 2.

Step 2. Increase i by 1. Switch one of the switchable boxes of (R;, Riy1) \ €;.

Step 3. If i <t, go to Step 2. If i =t + 1, then stop.

We have arrived at a canonical form H. Record the switched boxes Xy, ..., X; in a list List(H). So
List(H) = (Xo, ..., Xt) consists of the faces of G that were chosen to be switched to make U into a
canonical form, listed in order.

We observe that the CFB algorithm above works just as well for e-cycles if we remove e from U.

Reconfiguration between canonical forms. Let H, K € Hcan(m,n). Let List(H) = (Xo, ..., X;) and
List(K) = (Yo, ..., Y;) be the switched boxes of H and K respectively. We will reconfigure H into K, so
the algorithm will run on H.

Let D(H) = H N G¢y1 and note that D(H) is an e-cycle of Gyy1. Using the result of Nishat in [10],
D(H) can be reconfigured into D(K) by a sequence of valid moves.

Step 1. Set i =0. If t =0, go to Step 3. If £ > 0, go to Step 2.

Step 2. If Y; is switchable after switching X;, switch both X; and Y;.

If Y; is not switchable after switching X;, switch X;11 and any other switchable box in (R;11, Ri+2),
say X/, |, such that X, — X/ | is valid. We remark that the only the only case where Y; would
not be switchable after switching X; occurs when Y; is adjacent to X;1. Note that there are many
possible choices for X7, ;. Now Y; is switchable. Switch both X; and Y;. Update List(H) by setting
the (i + 1) slot to X/, ;. Increase i by 1.

Step 3. If i < t, go to Step 2.
If i = t and min(m,n) is even, switch X; and Y;, and then stop.
If i = t and min(m,n) is odd, go to Step 3.1.

Step 3.1. Switch X; and any one of the four switchable boxes, say X, located on the short sides of D. Run
NRI’s algorithm to reconfigure D(H) into D(K). Switch X and Y;. Stop.

Reconfiguration of a cycle into a canonical form (RtCF). The RtCF algorithm takes as input a
Hamiltonian e-cycle and outputs a canonical e-cycle. We will need the following proposition:

Proposition 2.2. Let H € H.
(a) If H has more than one large cookie, then there is a cascade of length at most two that reduces
the number of large cookies of H by one. This is the ManyLargeCookies (MLC) algorithm.
(b) If H has exactly one large cookie and at least one small cookie, then there is a cascade of length
at most 1 max(m,n) + min(m, n) + 2 that reduces the number of small cookies of H by one and
such that it does not increase the number of large cookies. This is the OneLargeCookie (1LC)
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algorithm.
The proof for Proposition 2.2 will be given in Section 3.

Now we can describe the RtCF algorithm. Without loss of generality, assume H € H is a Hamiltonian
e-cycle of G. Suppose H = Hy has ¢1;1arge large cookies and cq.sman small cookies. We run MLC c¢1;1arge — 1
times and then run 1LC ¢1.4man times to reconfigure Hy into H{), where H{) has exactly one (necessarily
large) cookie C. We define H; = (G N H)) and observe that H; is a Hamiltonian e-cycle of G;. This is
the first iteration of (RtCF). Now we describe the j*! iteration. We run MLC Cjilarge — 1 times and then
run 1LC ¢j.gman times to reconfigure H;_; into HJLI, where H ;71 has exactly one (necessarily large)
cookie Cj. The RtCF algorithm stops when j =t. We give a summary of the algorithm below.

Step 1. Set j = 0. Run MLC ¢ jarge times and then 1LC ¢1,gman times on Hy to reconfigure Hy into HY.

Step 2. Increase j by 1. Set H; = G; N H]’-_1 and note that H; is a Hamiltonian e-cycle in G;. Run MLC
Cj+1;large times and then 1LC ¢;ji1;sman times on Hj to reconfigure into H; into Hj.

Step 3. If j < t, go to Step 2. If j = ¢, stop.

Proof of the RtCF algorithm. Let N; be the neck of the only cookie C; of H} ; in Gj_1. Define
e1(N;j) = Nj N Rj_1, e2(N;) = N; N R; and {e3(N;),es(N;)} = N;j N H}_;. We observe that when the
RtCF algorithm stops, we have reconfigured H into

He.=D(H)U U (RjUes(Njr1) Uea(Nji1)) \ (e1(Njr1) Uea(Njpa).

Now we can see that H, is an element of Hcan(m,n) by setting X, 1 = N; for j = 1,2,...,t + 1 and
running CFB. See Figure 2.3 on page 12 for an illustration of the RtCF algorithm on a 10 x 10 grid.

Bound for Theorem 2.1. Recall that n > m. Note that it takes at most 2m moves to reconfigure
canonical forms into one another. Now we count the moves required for RtCF to terminate. Observe that
for each j € {0,...,t— 1}, H; has at most 2("_—22] + m;2j) =n+m — 4j cookies. This is the number of
iterations of ML.C or 1LC required for each j. It will follow from the proofs in Sections 3 and 4 that each

application of MLC or 1LC in H; requires at most %n 4+ m — 37 + 3 moves. So, RtCF requires at most:

L[(m—2)/2]

N (T .

3 (n+m—4j)<§+m—3j+2)

j=1

L(m—=2)/2] 02 3nm
= > (12j2+(—5n—7m—8)j+7+T+2n+m2+2m)

j=1
3 9 m2  m n?  3nm 9

< 1(m® — 3m* + 2m) + (=5n — Tm — 8) ?—Z)—l—%(?—i—?—i—%l—&—m +2m)(m—2)
_n2m+nm2+3nm+m3 3m? n2+ 9
T4 8 1 8 a4 e

n*m  nm 3m  2n
e Im oy,

2 4 n

Let x = 7*. Then 37"‘ + %” =3x+ % Using calculus, we find that it attains a minimum of 2v/6 at = = @.
Then (3— 377” — %") can be at most 3—2v/6 < —1. It follows that RtCF requires at most nsz — %+m—2n
to terminate. For a complete reconfiguration we need to run RtCF once for each e-cycle and reconfigure

the resulting canonical forms. So, we need at most 2(”277" — %+m72n) +m = n’m— o —4n+3m < n’m

moves for a complete reconfiguration. We remark that this is a worst case scenario and conjecture that
the typical number of moves required is of the order of n2.
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Initial configuration

First move

Second move

25

]

]

Third move

Fourth move

Fifth move

=

Sixth move

Ninth move

Seventh move

Eighth move

Figure 2.3. An illustration of RtCF on a 10 x 10 grid graph. Pink squares indicate boxes that have just
been switched; green squares indicate boxes that we’ll be switched next. The first three moves are in the
j = 0 iteration of RtCF, the next three moves are in the j = 1 iteration, and the last three moves are in
the j = 2 iteration. No moves are required for the j = 3 iteration, since H3 has exactly one large cookie.
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3 Existence of the MLC and 1LC Algorithms

e Recall that RtCF algorithm in Section 2 presupposes the existence of the moves required for its ex-
ecution. The proofs of existence were deferred to the ManyLargeCookies (MLC) and OneLargeCookie
(1LC) algorithms, which we prove in Sections 3.1 and 3.2, respectively. These algorithms ensure that
whenever RtCF requires a particular move, either the move is immediately available, or else there exists
a cascade after which the required move becomes available. Importantly, such cascades do not undo the
progress already made: RtCF does not regress. The restrictions in the definition for cascades at the end
of Section 1.4 were designed precisely for this reason.

Consider an iteration of RtCF on rectangle G; with Hamiltonian e-cycle H;. At this stage, H; either
has more than one large cookie, exactly one large cookie with at least one small cookie, or exactly one
large cookie with no small cookies. In the last case, H; is already in the desired form for this iteration,
and RtCF proceeds to G;11. The MLC algorithm handles the first case by finding the required cascades
to collect large cookies when multiple large cookies are present. The 1LC algorithm handles the second
case by finding the required cascades to collect small cookies when exactly one large cookie remains.

Why do we need two separate algorithms for what appears to be the same task? This is because
small cookies can be harder to collect than large ones. A second large cookie J always has a switchable
neck Nj; to collect J we need only find another switchable box X such that Nj — X is a valid move,
or a cascade delivering such a switchable box. In Section 3.1, we show that it takes at most two moves
to accomplish this (Proposition 3.8). Small cookies, by contrast, consist of a single non-switchable box.
To collect a small cookie, either the box Y adjacent to it in (R;, R;+1) must be switchable, or we must
find a cascade that makes Y switchable. The latter task can require much longer cascades, and it is more
difficult to deal with. It requires Lemma 3.7, all of Section 3.2, most of Section 4, and several results from
Chapter 1. Furthermore, the assumption that exactly one large cookie is present significantly shortens
and simplifies the proofs of Proposition 3.10 and Lemmas 3.11-3.15 in Section 3.2, by precluding the
possibility of several tedious cases. e

3.1 Existence of the MLC Algorithm

Definitions. Let G be an m x n grid graph, let H be a Hamiltonian cycle of G,
and let W be a switchable box in H. Let X and Y be the boxes adjacent to W X|W|Y
that are not its H-neighbours, and assume that X and Y belong to the same H-
component. By Corollary 1.4, the H-path P(X,Y) is unique. We call P(X,Y")
the looping H-path of W. See Figure 3.1 for an illustration of the looping H-path Te 5.1 The loopine

of a switchable box W in a Hamiltonian cycle of a 6 x 6 grid graph. H-path of W shaded orange.

Outline of the MLC algorithm. Let H be a Hamiltonian cycle of an m x n grid graph G with multiple
large cookies. We first identify a large cookie J with switchable neck Nj. Consider what happens if N;
is switched: this would produce two cycles, H; and Hs. First we observe that there must be some edge
{v1,v2} in Ry (recall the nested rectangles from Chapter 2) with v; € H; and vy € Hy (Lemma 3.7).
The proximity of {v1,vs2} to the boundary constrains the possible configurations of edges in its vicinity.
We analyze those configurations (Lemma 3.5) and show that either an (Hy, Hz)-port already exists near
{v1,v2}, or a single-move cascade on the original H yields a Hamiltonian cycle H' where such a port
exists after switching N.

Proposition 3.1. Let G be an m x n grid graph, let H be a Hamiltonian cycle of G, and let P(X,Y)
be the looping H-path of a switchable box W. Let H’ be the graph consisting of the cycles H; and Hs
obtained after switching W. Then a box Z of G belongs to the H'-cycle P(X,Y), W, X if and only if Z
is incident on a vertex of H; and on a vertex of Hs.

Proof. Orient H as a directed cycle H = vq,...,v,,v;. By Lemma
1.15, W is anti-parallel. Let the edges of W in H be {vg;,v,41} and

1 . {vy—1,vy}. For definiteness, assume that X is adjacent to {v,vz11},
¢ Y is adjacent to {vy_1,v,} and that W is on the right of {vy, vy41}.
Then we have that ®((vy, vz41),left) = X and ®((vy—1,vy),left) =Y.
Urp1@ QU1 Define l_gl and Ko to be the subtrails K ((vg,vz41), (vy—1,vy)) and

X 1 4 Y Y

T 1 ?((vy,l,vy),(vw,vmﬂ)) of Ky, respectively. By Lemma 1.16 (i),
Vo Uy switching W splits H into two cycles Hy; and Ha, with V(H;) =

Fig. 3.2. I_%l in blue, ?2 in orange. V(Rzl) \ {Um? 'Uy} and V(Hz) _ V(?2) \ {'Um+17 vy71}~
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Proof of (= ). Since P(X,Y) is unique, any H-walk of boxes between X and Y contains P(X,Y). In
particular, <I>(I4(>1,left) contains P(X,Y) and @(?2, left) contains P(X,Y’). Let Z be a box of P(X,Y).
Then Z is added to ®(Kq,left) by an edge of K1 and Z is added to ®(Ko,left) by an edge of K.
By definition of FTW, Z is incident on a vertex of ?1 and a vertex of K. Since for i € {1,2},

V(?i) D V(H;), we have that Z is incident on a vertex of H; and a vertex of Hs. Lastly, note that W
is incident on v, 1 € Hy and v, € Hy. End of proof for ( = ).

Proof of ( < ). Suppose we switch W and obtain the graph H’ consisting of the cycles Hy and H.
Observe that P(X,Y), W, X is the only H'-cycle in G. We will say that a box Z of G satisfies (x) if
Z is incident on a vertex in H; and Hs. We will show that if a box Z of G satisfies (%) then it must
belong to an H'-cycle of boxes that satisfy (x). Then, since there is only one H'-cycle in G, Z = W or
Z € P(X,Y).

Let Z be a box in G that satisfies (). For definiteness, assume that Z = R(k,[l). We will show that
Z has exactly two neighbours in G that satisfy (x) and that Z is H’-adjacent to those two neighbours.
Since Z satisfies (x), either Z has two vertices in H; and two vertices in Hy or Z has one vertex in one
of Hy; and Ho and three vertices in the other.

CASE 1: Z has two vertices in Hy and two vertices in H,. First we will check
that the pair of vertices belonging to H;, i € {1,2} must be adjacent in Z. Assume o
for contradiction that v(k,l) and v(k + 1,1+ 1) belong to H; and v(k 4 1,1) and
v(k,l + 1) belong to Hs. See Figure 3.3. Let @ be the closed polygon consisting of ¢ - d
the subpath P(v(k,l),v(k+ 1,14+ 1)) of Hy and the segment [v(k,1),v(k+ 1,1+ 1)]. Fig. 3.
Then, by Theorem 1.1, v(k + 1,1) and v(k,l+ 1) are on different sides of H;. It follows that the subpath
P(v(k+1,1),v(k,l + 1)) of Hy intersects Q. Since P(v(k + 1,1),v(k,l+ 1)) does not intersect @ at the
segment [v(k,1),v(k+ 1,1+ 1)], it must intersect @ at some vertex in P(v(k,l),v(k+ 1,1+ 1)). But this
contradicts that H; and Hy are disjoint. It follows that the pair of vertices belonging to H;, i € {1,2}
must be adjacent in Z.

4 41 For definiteness assume that v(k,l) and v(k + 1,1) belong to H; and that v(k +

k
b 1,14+ 1) and v(k,l + 1) belong to Hs. See Figure 3.4. Since H; and Hy are
e c:> " disjoint e(k;l,1+1) ¢ H and e(k + 1;1,1+1) ¢ H so Z + (—1,0) and Z + (1,0)
= are H'-adjacent to Z. Since v(k,l) € H1 NV(Z + (-=1,0)) and v(k,l + 1) €
. o o HyNV(Z+(—1,0)), Z+ (—1,0) satisfies (x). Similarly, Z + (1,0) satisfies (). It
Fig. 3.4.

remains to check that Z + (0,1) and Z + (0, —1) do not satisfy ().

Assume for contradiction that one of Z+ (0, 1) and Z+ (0, —1) satisfies (). By symmetry we may assume
WLOG that Z + (0, 1) satisfies (x). Then at least one of v(k,l +2) and v(k + 1,1+ 2) belongs to H;. By
symmetry we may assume WLOG that v(k,l 4+ 2) € H;. It follows that e(k;l + 1,1+ 2) ¢ H' and that
v(k — 1,14+ 1) € Hy. Then we must have e(k — 1,k;l 4+ 1) € Hy and e(k,k + 1;1+ 1) € H,. But then,
by Corollary 1.2, one of v(k,l) and v(k,l 4+ 2) belongs inside the region bounded by Hs and the other
belongs outside it. It follows that the subpath P(v(k,l),v(k,l + 2)) of H; intersects Hs, contradicting
that H; and H are disjoint. End of Case 1.

CASE 2: Z has one vertex in one of Hy and Hy and three vertices in the other. For definiteness assume
that v(k,1), v(k,l + 1) and v(k + 1,1 4+ 1) belong to H; and that v(k + 1,1) belongs to Hs. Then
e(k,k+1;1) ¢ H and e(k+1;1,14+1) ¢ H',so Z+ (1,0) and Z + (0, —1) are H'-neighbours of Z. Since
v(k,l) e HHNV(Z+ (0,—1)) and v(k + 1,1) € Hy,NV(Z + (0,—1)), Z + (0, —1) satisfies (x). Similarly,
Z + (1,0) satisfies (*). It remains to check that Z + (0,1) and Z 4 (0, —1) do not satisfy (x).

Assume for contradiction that one of Z + (—1,0) and Z + (0, 1) satisfies (%). By symmetry we may
assume WLOG that Z + (0, 1) satisfies (x). Then one of v(k,l+2) and v(k+ 1,14 2) belongs to Hs. Note
that if v(k + 1,14 2) € Hy we run into the same contradiction as in Case 1, so we only need to check the
case where v(k,l 4+ 2) € Hs. Now, either e(k,k +1;1+ 1) € Hy,or e(k,k+1;1+1) ¢ H'.

k +1
CASE 2.1: e(k,k + 1;14+ 1) € Hy. Then the segment [v(k,l + 2),v(k +
1,1)] intersects Hy at the point (k3,14 1). by Corollary 1.1, the vertices
e(k,l+2) and v(k + 1,1) are on different sides of H;, and we run into the
same contradiction as in Case 1 again. End of Case 2.1. See Figure 3.5(a)

CASE 2.2: e(k,k+ 1;1+1) ¢ Hy,. Consider the polygon @ consisting of Fig. 3.5(a). - Fig. 3.5(b).
the segment [v(k,[+2),v(k=+1,1)] and the subpath P(v(k,14+2),v(k+1,1))

of Hy. By Corollary 1.1 the vertices v(k,l 4+ 1) and v(k + 1,1 + 1) are on different sides of Q. BY JCT
the subpath P(v(k,l+1),v(k+ 1,1+ 1)) of H; intersects Q. Since P(v(k,l+1),v(k+ 1,14 1)) does not
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intersect @ at the segment [v(k,l+2),v(k+1,1)], it must do so at some vertex of P(v(k,l+2),v(k+1,1)),
contradicting that H; and Hj are disjoint. See Figure 3.5(b). End of Case 2.2. End of Case 2. End of
proof for (< ). O

Corollary 3.2 (i). Let G be an m x n grid graph, let H be a Hamiltonian cycle of G, and let W be a
switchable box in H. Let H’ be the graph consisting of the cycles H; and Hs obtained after switching
W. Let a,b and ¢ be colinear vertices such that b is adjacent to a and ¢. Then, for ¢ € {1,2}, If @ and ¢
belong to H;, so must b. See Figure 3.4. O

Corollary 3.2 (ii). Let G be an m x n grid graph, let H be a Hamiltonian cycle of G, and let W be a
switchable box in H. Let H’ be the graph consisting of the cycles H; and H, obtained after switching
W. Let Z be a box on vertices a, b, ¢, and d such that a and b belong to Hy, and ¢ and d belong to Hs.
Then a is adjacent to b, and c is adjacent to d. See Figure 3.3. O

Proposition 3.3. Let H be a Hamiltonian cycle of an m xn grid graph
G, let W be a switchable box in H and let P(X,Y) be the looping
H-path of W. If P(X,Y) has a switchable box Z, then Z — W is a
valid move.

Proof. Let H = vy,va...,vp,v1. Let W, P(X,Y), {vz,vz41} and
{vy—1, vy } be as in Proposition 3.1. By Lemma 1.15, W is anti-parallel.
Fig. 3.6, Pi in bhl;’"”Pg in”zrangc_ Let P = P(v,, vy) an.d let P, = P(vy,v,). By Proposition 3.1, every
box of P(X,Y) is incident on a vertex of P; and a vertex of P,. Let
Z be a switchable box of P(X,Y). Let (vs,vs41) and
(vt,ve41) be the edges of Z in H. For definiteness, assume s+ 1 < ¢. Proposition 3.1 implies that exactly
one of (vs,vs41) and (vg, vep1) is in Py and the other is in Po. WLOG assume that (vs,vs41) is in P; and
that (vg,v441) is in P5. Then we can partition the edges of H as follows: P(v1,vs), (vs, vst1), P(Vsy1,0¢),
(v, ve41), P(ves1,0r), {vp,v1} where l <z <s<y <t <r.

We we check that Z — W is a valid move. After removing the edges (vs,vs11) and (vg, viy1) we are
left with two paths: P(vei1,vs) and P(vsy1,v:). Note that adding the edge {vs,vry1} gives a cycle Hy
consisting of the path P(vs, v441) and the edge {vs, v¢11}. and adding the edge {vs41, v: } gives a cycle Hy
consisting of the path P(vsy1,v:) and the edge {vst1,v:}. Now 1 < & < s implies that (vg,ve41) € Hy
and s < y < t implies that (vy,_1,vy) € Ha. It follows that W is now an (H;, Hy)-port. By Lemma 1.16
(ii), Z — W is a valid move. O

Observation 3.4. Let X — Y be a valid move. If X € ext(H) and Y € int(H) then:
(i) X — Y increases the total number of cookies if and only if X € G; and Y € G \ G1.
(ii) X — Y increases the total number of large cookies, leaving the total number of cookies unchanged,
if and only if X € G1, Y € G1 \ G2 and Y is adjacent to a small cookie.
(iii) X — Y decreases the total number of cookies if and only if X € Gp \ G; and Y € G;.

Lemma 3.5. Let H be a Hamiltonian cycle of an m x n grid graph G and let Z be a switchable box
in Z € ext(H) N ((Go \ G1) U G3). Assume that switching Z splits H into the cycles Hy and Hy that
are such that there is v1 € H; N Ry and v, € Hy N Ry with v; adjacent to ve. Then either Z — Z’ is a
cascade, or there is a cascade u, Z — Z’ (of length two), with Z — Z’ nontrivial in either case.

1 2 3 1 2 3
In figures 3.7 through 3.11, vertices and edges of H; and Hy o ¢ o
are in blue and orange, respectively, and boxes of int(H) are 0 P S
shaded in green. = =
-1 o -1 o o
Proof. We will use the assumption that Z € (G \ G1) U G3
repeatedly and implicitly throughout the proof. Switch Z Fig. 3.7 (a). Fig. 3.7 (b). Case 1.

to obtain H’ consisting of the disjoint cycles H; and Hs.

Note that now, if a vertex belongs to H; for ¢ € {1,2}, both edges incident on it must also belong
to H;. For definiteness, let v; € H; N Ry be the vertex v(2,1) for some | € {2,...,n — 3} and let
ve =v(2,l —1) € HyN Ry. Then e(2;1 —1,1) ¢ H, and by Corollary 3.2 (i), v(2,l + 1) € H; as well. By
Proposition 3.1, R(1,l — 1) and R(2,! — 1) belong to int(H). Now, either v(1,l) € Hy, or v(1,l) € H,.
See Figure 3.1.

CASE 1: v(1,1) € Hy. Then e(1,2;1) ¢ H. Corollary 3.2(i), v(3,1) € H;. It follows that e(2;1,i+1) € H’
and e(2,3;1) € H'. Now, by Corollary 3.2 (ii), v(1,l — 1) € Hy and by Corollary 3.2 (i), v(0,1) € Ha. At
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this point we must either have, e(1;1,{+1) € H or e(1;1,1+ 1) ¢ H'.

-

+1

CASE 1.1: e(1;1,1+ 1) ¢ H'. Then e(1;1 — 1,1) € Hy and
e(0,1;1) € Hy. Since Z € ext(H), by Proposition 3.1, R(1,1—
1) € int(H). Then R(0,! — 1) must be a small cookie of G, so = = =
we must have that e(0,1;1 — 1) € Hy and that e(1,2;/—1) ¢ .10—06 11l 0—o0 4 o—0 il
H'. 1t follows that e(2,3;1 — 1) € H and e(3;1 —1,1) ¢ H'.

Now note that R(2,l —1) is an (Hi, Hy)-port. Then, by Fig. 3.8 (a). Case 1.1 Fig. 3.8 (b). Case 1.2
Lemma 1.16 (ii) and Observation 3.4, Z — R(2,1—1) is valid

move that does not create new cookies. So, Z +— R(2,l — 1) is the cascade we seek. End of Case 1.1

O Il
[V
I w
~ ot
(@] (6]
o]

O 1

CASE 1.2: e(1;1,1+1) € H'. Proposition 3.1, and the assumption that Z € ext(H) imply that R(1,1) €
int(H). Then, Lemma 1.14 implies that R(0,!) is a small cookie of G. Note that if ¢(2,3;1—1) € H’, then
we’re back to Case 1.1, so we may assume that e(2,3;1—1) ¢ H'. It follows that e(1,2;]/—1) € Hs and that
R(0,1 — 1) is not a small cookie of H. Then, by Observation 3.4 and Proposition 3.3, R(0,1) — R(1,1),
Z — R(1,1 —1) is the cascade we seek. End of Case 1.2. End of Case 1.

ao e P ' e ° CASE 2 v(1,1) € Hy. Then e(2,3;1) € Hy or e(2,3;1) ¢ H'.
e e o ¢ o e&—e (ASE 2.1: €(2,3;1) € Hy. Note that if e(2,3;1 — 1) € Ho,
= = = then we're back to essentially the same scenario as Case 1.1,
. ¢y . 'SR so we may assume that e(2,3;1—1) ¢ Ho. Thene(1,2;1—1) €
Hy. 1t follows that e(1;! — 1,1) ¢ H' and so R(0,1 — 1)
Fig. 3.9 (a). Case 2. Fig. 3.9 (b). Case 2.1 is not a small cookie of H. Now, either e(1,2;1) € Hy, or
e(1,2;1) ¢ H'.
CASE 2.1 (a): e(1,2;1) € Hy. By Observation 3.4 and T2 3 123
Proposition 3.3, Z — R(1,] — 1) is the cascade we seek. ™' ¢ e
End of Case 2.1(a).
¢ o—o—o0 ¢ @—=8 il
CASE 2.1 (b): e(1,2;1) ¢ H'. Then we have that e(2;1,1+ . o o S

1) € Hy, that e(1;1,1 + 1) € Hy and that R(1,1) € int(H).
It follows that R(0,!) € ext(H), so R(0,1) must be a small
cookie. Then, after R(0,!) — R(1,), we are back to Case
2.1 (a). End of Case 2.1(b). End of Case 2.1.

Fig. 3.10 (a). Case 2.1(a). Fig. 3.10 (b). Case 2.1(b).

o ¢ CASE 2.2: €(2,3;1) ¢ H'. Then we have that e(1,2;1) € Hy. Note that if e(1,2;1 —
1) € Hj, then we're back to Case 2.1, so we may assume that e(1,2;1 —1) ¢ H'. It
= follows that e(2;1 —2,1—1) € Hy. Note that if e(1;1—1,1) € Hy, then R(0,l—1) €
A — 9 ext(H) and R(0,1) € ext(H), contradicting Lemma 1.14, so we may assume that
e(1;1—1,1) ¢ H'. Then we must have that e(1;] — 2,1 —1) € H'. This implies that
R(0,1 — 2) is a small cookie of H. Then after R(0,1 —2) — R(1,l — 2), we’re back
to Case 2.1(a). End of Case 2.2. End of Case 2. .

— o
Fig. 3.11. Case 2.2.

Observation 3.6. Let H be a Hamiltonian cycle of an m x n grid graph G, with m,n > 5 and let J be
a large cookie of G. Then J N Ry # 0.

Lemma 3.7. Let H be a Hamiltonian cycle of an m x n grid graph G, with m,n > 5 and assume that
G has at least two large cookies J; and Jo. Then switching the neck Nz of Jy splits H into two cycles
H; and Hs such that there is v1 € H; N Ry and vy € Ho N Re with v; adjacent to vs.

Proof. Orient H. Let {v,, v, } be the boundary edge of the neck N, of J;. Define ?1 and ?2 to be the
subtrails K ((vg, Vz41), (Vy—1,vy)) and K ((vy, vy+1), (vg—1,vz)) of K g, respectively. By Lemma 1.16 (i),
switching Ny, gives two cycles Hy and Hs, with V(H;) = V(?l \ {(ve,vy)}) and V(Hy) = V(K>). By
Lemma 1.13, V(J;) = V(K 1). By Observation 3.6, V(J;) N Ry # 0. Then V(H,) N Ry # 0.

Since V(J;) = V(l_gl), we have that V(J3) C V(?g) = V(Hs). By Observation 3.6, V(J2) N Ry # 0.
It follows that V (Hz) N Ry # 0.

We have shown that V(H;) = Ry # ) and that V(H2) N R2 # 0. It remains to check there is
v1 € H1 N Ry and vy € Hy N Ry with v adjacent to ve. v1 € H1 N Ry and Ry = wy, ..., ws, with v; = w;.
Sweep Rs starting at wy. If there is i € {1,...,s — 2} such that v; € H; and v;41 € Hs, we are done. If
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there is no such i then Ry U Hy, contradicting that Ry U Hy # 0. O

Proposition 3.8. (MLC Algorithm.) Let H be a Hamiltonian cycle of an m x n grid graph G.
Assume that G has more than one large cookie. Then there is a cascade of length at most two that
reduces the number of large cookies of G by one.

Proof. Let J be a large cookie of G with neck N;. Switching N; splits H into the cycles H; and Hs.
By Lemma 3.7 there is v1 € H; N Ry and vy € Hy N Ry with v, adjacent to vs. By Lemma 3.5 there is
a cascade of length at most two, whose last move is N; — N’ with N; # N’;. By Observation 3.4, this
cascade decreases the number of large cookies of G by one. [

3.2 Existence of the 1LC Algorithm

K X Definitions. Let G be an m x n grid graph
koo and H be a Hamiltonian cycle of G. We call a
subpath of H on the edges e(k; 1,1+ 1),e(k, k+
, |_| , +3 1;1+ 1) and e(k + 1;1,1 + 1) a northern leaf.
4o We will often say that R(k,l) is a northern leaf
o Fig, 312 (0). Avtype. to mean that e(k; 1,1+ 1),e(k,k 4+ 1;1+ 1) and
A nlitfl-ern((liiéﬂ ’ oA e(k+1;1,1+1) belong to H. Southern, eastern
P and western leaves are defined analogously.
. We call the subgraph of H on the edges e(k—
b Lk, e(k;Ll+1), e(k+1,k+2;1), and e(k +

| | 1;1,1 + 1) a northern A-type. Suppose H has

¢ e Figl'c jf'lfil(fo)"wﬁog;h:m a northern A-type. We call the subgraph A U
northern A; type. e(k,k+1;1+ 1) of H a northern Ag-type, and
Fig. 3.12 (b). A-type.  Fig. 3.12 (d). Aj-type. we call the subgraph AUe(k;14+1,14+2)Ue(k+

1;141,142) of H a northern A;-type. We make
analogous definitions for eastern, southern and western A-types. See Figures 3.12.

Let R(k,l — 1) be a northern leaf. If H has a northern A-type on e(k — 1,k;1+ 1),e(k;l+ 1,1+ 2)

and e(k+1,k+2;14+1),e(k+1;14+ 1,14 2) then we say that A-type follows the northern leaf R(k,I—1)
northward. We call the switchable box R(k,l + 1) the switchable middle-boz of the Ai-type. Analogous
definitions apply for other compass directions.
Let A be a northern Ag-type in H on the edges e(k — 1,k;0), e(k;0,1), e(k,k + 1,1), e(k + 1;0,1),
e(k+ 1,k +2;0) and let j € {1,2,..[%”. We define a northern j-stack of Ag’s starting at A to be a
subgraph stack(j; Ag) of H, where stack(j; Ag) = Uz;& (A + (072z’)). If j = [ %], we call the j-stack a
full 3-stack of Ag’s. We note that j is the number of Ay’s in stack(j; Ag). Eastern, southern, and western
j-stacks are defined analogously.

We denote the set of northern and southern small cookies by SmallCookies{N,S} and the set of
eastern and western small cookies by SmallCookies{E,W}. Assume that C' € SmallCookies{N, S}
is an easternmost or westernmost southern or northern small cookie. Then we call C' and outermost
small cookie in SmallCookies{N,S}. Outermost small cookies in SmallCookies{E, W} are defined
analogously.

Let R(k,l) be a northern leaf. We say that the cascade 1, ..., u, collects R(k,1), if . is the move
Z — R(k,l). Note that, since R(k,) is not switchable, Z must be a switchable box adjacent to R(k,[).

Given a small cookie C, we want to show that there is a cascade that collects C'. For K 1 42
definiteness, assume that C is the northern small cookie R(k,0). If e(k,k+1;2) € H,
then C'+ (0,1) — C is the cascade we seek, so we only need to consider the case where 5| i
e(k,k +1;2) ¢ H. Then we must have e(k — 1,k;2) € H, e(k + 1,k + 2;2) € H,
e(k;2,3) € H and e(k +1;2,3) € H. Note that if e(k — 1,k;3) € H, then C' + (0,2) —
C + (—1,2) followed by C + (0,1) — C is the cascade we seek, so we consider the case 1
where e(k — 1,k;3) ¢ H and, by symmetry, where e(k + 1,k 4+ 2;3) ¢ H. Now, we
either have e(k;3,4) € H and e(k + 1;3,4) € H or e(k,k + 1;3) € H. That is, C is Fig. 3.13.
followed northward by an Ag-type or by an A;-type. See Figure 3.13. From this point onward, we will
omit the compass direction when it does not introduce ambiguity. We coalesce this paragraph into the
following lemma:

Proposition 3.10. (1LC Algorithm). Let G be an m x n grid graph, let H be a Hamiltonian cycle
of G. If H has exactly one large cookie and at least one small cookie, then there is a cascade of length
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at most 1 max(m, n) 4+ min(m, n) + 2 moves that reduces the number of small cookies of H by one and
such that it does not increase the number of large cookies.

The proof of Proposition 3.10 requires the following two Lemmas.

Lemma 3.11. Let G be an m x n grid graph, let H be a Hamiltonian cycle of G, and let C €
SmallCookies{N, S} be an easternmost small cookie. Assume that G has only one large cookie. Then
there cannot be a full j-stack of Afs starting at the Ap-type that contains C.

Lemma 3.12. Let G be an m x n grid graph, let H be a Hamiltonian cycle of G, and let C' €
SmallCookies{N, S} be an easternmost small cookie. Assume that there is a j-stack of Ay starting at
the Ap-type containing C. Let L be the leaf in the top (") Ag of the stack. Assume that L is followed
by an A;-type and that G has only one large cookie. Then there is a cascade of at most min(m,n) + 3
moves that collects L.

Proof of Proposition 3.10. Since there is at least one small cookie, at least one of SmallCookies{N, S}
and SmallCookies{E, W} is nonempty. WLOG assume that SmallCookies{N,S} is nonempty. Let
C € SmallCookies{N, S} be an easternmost small cookie. We will require the following two lemmas.

Ljo—1
Hs Hs+1 Hs+2
e e e
Ljy—2 Ljy,—2
Ly Ly Ly
Fig. 3.14 (a). Fig. 3.14 (a). Fig. 3.14 (c). Fig. 3.14 (d).

For definiteness assume that C' is a small northern cookie on the southern boundary. Let Q(j) be the
statement “There is a j-stack of Ay’s starting at the Ap-type containing C”. Note that C'is contained in an

Ap-type, so Q(1) is true. By Lemma 3.11, there is a jj € {2, 3, ... {%J } such that for each j € {2..,j0—1},

Q(4) is true for each j < jo but Q(jo) is not true.

For j € {1..,jo—1} let L; be the northern leaf of the 4t Ag-type in the stack. Note that L; = C. Lemma
3.9 implies that L; _; is either followed by an A;-type or there is a cascade that collects Lj,—1. If L;;_;
is followed by an A;-type, then by Lemma 3.12, we can find a cascade that collects it, so we only need to
check the case in which there is a cascade p, ..., us that collects Lj _;. Note that j, must be the move
Ljo—1+(1,0) = Lj—1. Then p1,..., s, Ljy—2 + (0,1) — Lj,—2,...., L1 + (0,1) — Ly is a cascade that
collects C'. See Figures 3.14 for an illustration with jo — 1 = 3. Note that j < 7, and that by Lemma
3.12, there are at most min(m,n) + 3 moves required to collect L. After that, we need at most another
j — 1 flips to collect C, so C' can be collected after at most § max(m,n) + min(m,n) + 2 moves. See
Figure 3.14 for an illustration with jo —1=3. O

ko1 42

It remains to prove Lemmas 3.11 and 3.12.

2 n-1
Proof of Lemma 3.11. Assume for contradiction that C' is in a full | .
stack of Ag’s starting at the Ay that contains C. For definiteness,
assume that C' = R(k, 0) is a small northern cookie on the southern
boundary. First we check that m—1 > k+2. If m—1 = k+2, then
we must have e(k +2;0,1) € H and e(k + 2;1,2) € H. But then . .
H misses v(k + 2,3) (in green in Figure 3.15 (a)). The number j - P -
of Ag’s in the full stack is even or an odd so there are two cases
to check. Note that for each odd i € {1,2,...,5}, the leaf of the i*!
Ao belongs to ext(H) and for each even i € {1,2,..., 5}, the leaf of
the i™" Ay belongs to int(H).

Fig 3.15(a). Case 1.1. Fig 3.15(b). Case 1.2.
CASE 1: j is even. Note that the top leaf of the stack is in int(H). Now, n — 1 is either even or odd.

CASE 1.1: n—1 is even. We have that R(k,n—3) € int(H). But then we must have R(k,n—2) € ext(H)
and R(k+ 1,n — 2) € ext(H), contradicting Lemma 1.14. End of Case 1.1. See Figure 3.15(a).
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CASE 1.2: n—1 is odd. Then we must have that R(k + 1,n — 2) is a small southern cookie. But this
contradicts our assumption that C' is the easternmost small cookie in SmallCookies{N,S}. End of Case
1.2. End of Case 1. See Figure 1.15 (b).
. k +1  +2  +3 o k +1  +2  +3
B | | CASE 2: j is odd. Note that the top
- -2 leaf of the stack is in ext(H). Again,
n — 1 is either even or odd.

CASE 2.1: n — 1 is odd. We have
that R(k,n — 2) € ext(H). But then,
the fact that e(k,k + 1;n —1) € H
1 ! implies that R(k,n—2) is not a cookie
L o . o neck, contradicting Lemma 1.14. End
Fig 3.16(a). Case 2.1. Fig 3.16(b). Case 2.2(a). Fig 3.16(c). Case 2.2(b). of Case 2.1. See Figure 3.16 (a)

2 2

CASE 2.2: n— 1 is even. We have that e(k 4+ 1,k + 2;0) € H. Then, either e(k + 2,k + 3;0) € H, or
e(k+2;0,1) € H.

CASE 2.2(a): e(k+2,k+3;0) € H. Then we must have e(k+2;1,2) € H. Note that fori € {1,3,...,n—2},
e(k + 2;4,i4+ 1) € H implies e(k + 2;i + 2,i + 3) € H. Then, for i € {1,3,...,n — 2}, we have that
e(k+2;i,i4+ 1) € H. Note that we must also have e(k+ 2,k +3;n —2) € H. Then R(k + 2,n — 2) must
be a southern small cookie, contradicting the easternmost assumption. End of Case 2.2 (a).

CASE 2.2(b): e(k+2;0,1) € H. Note that if e(k + 2,k + 3;1) € H, then R(k + 2,0) must be a small
cookie, contradicting the easternmost assumption. Then e(k + 2,k + 3;1) ¢ H. But then we have
e(k+2;1,2) € H, and we are back to Case 2.2(a). End of Case 2.2(b). End of Case 2.2. End of Case 2.
O

We will need Lemmas 3.13-3.16 to prove Lemma 3.12.

Lemma 3.13. Let G be an m x n grid graph, and let H be a Hamiltonian cycle of G. Let C be a small
cookie of GG. Assume that G has only one large cookie, and that there is a j-stack of Aj starting at the
Ap-type containing C. Let L be the leaf in the top (') Ay of the stack, and assume that L is followed
by an A;-type. Let X and Y be the boxes adjacent to the middle-box of the A;-type that are not its
H-neighbours. If P(X,Y) has no switchable boxes, then either:

(i) there is a cascade of length at most min(m,n), which avoids the stack of Ay’s, and after

which P(X,Y), gains a switchable box, or
(ii) there is a cascade of length at most min(m,n) + 1, that collects L and avoids the stack of Agy’s.

We postpone the proof of Lemma 3.13 until Section 4. It takes up all of the section.

Lemma 3.14. Let G be an m x n grid graph, let H be a Hamiltonian cycle of G, and let C €
SmallCookies{N, S} be an easternmost small cookie. Assume that G has only one large cookie, and
that there is a j-stack of Ag starting at the Ap-type containing C'. Let L be the leaf contained in the top
(7*h) Ag of the stack. Assume that L is followed by an A;-type with looping H-path P(X,Y). Let X’
be the box of G that shares edges with X and Y. Then X’ € Gs.

1k 41 1k 41 42 Proof. For definiteness, assume that L is the northern leaf
. " . J R(k,l —2), and that X = R(k — 1,1). Then X' = R(k,l) and

Y = R(k+1,1). Note that { —2 > 0 and [ +2 < n— 1. Either
X|X|Y XXy P(X,Y) is contained in ext(H), or P(X,Y) is contained in

‘ ‘ int(H), so there are two cases to check.
-1 -1

L L CASE 1: P(X,Y) C ext(H). By Lemma 1.14, we must have
Fig. 3.17 (a). Case 1. Fig. 3.17 (b). Case 2. that m —1>k+2and k—1>0. Tosee that n — 1 > 1+ 2,

assume for contradiction that n —1 =1+ 2. By Lemma 1.14,
X + (1,0) and Y + (1,0) are cookie necks. But this contradicts the assumption that there is only large
cookie in G. See Figure 3.17 (a). End of Case 1.
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CASE 2: P(X,Y) C int(H). By Lemma 1.14, we must have that m —1 > k+2 and £k — 1 > 0. To see
that n — 1 > [ 4 2, assume for contradiction that n — 1 =+ 2. Lemma 1.14 implies that X’ + (0,1) is
the neck of the large cookie of G. But now X’ + (2,1) must be a small cookie of G, contradicting the
easternmost assumption. See Figure 3.17 (b).

Lemma 3.15. Let G be an m x n grid graph, let H be a Hamiltonian cycle of G, and let C €
SmallCookies{ N, S} be an easternmost small cookie. Assume that G has only one large cookie, and
that there is a j-stack of Ay starting at the Ao-type containing C. Let L be the leaf in the top (j*") A of
the stack. Assume that L € int(H) and that L is followed by an A;-type with looping H-path P(X,Y).
Let X’ be the box of G that shares edges with X and Y. If X’ is not in G3 then, either X' — W is a
cascade, or there is a cascade p, X' — W, of length two, with X’ — W nontrivial in either case.

Proof. Suppose that X’ is not in G3. By Lemma 3.14, X’ € G2 \ G3. For definiteness assume that L is
a northern leaf, and let X’ = R(k,[). The assumption that L € int(H) implies that  — 2 > 0.

k +1  +2 43

Now we check that m — 1 > k + 3. By Lemma 1.14, m — 1 > k + 2. Assume for
contradiction that m — 1 = k + 3. Note that we must have e(k + 1,k + 2;0) € H, o
e(k+2,k+3;0) € H, and e(k + 3;0,1) € H. This implies that we must have
e(k+2;1,2) € H and e(k + 2,k + 3;1) € H. But now H misses v(k + 3;2). It c
follows that we must have m — 1 > k + 3. See Figure 3.175(b). By symmetry,
0 < k—2. It follows that | +3 =n — 1.

The same argument used in Case 2.2 of Lemma 3.11 (see Figures 3.16 (b) and (c)) shows that we
have e(k +2;1+ 1,1+ 2) € H and e(k + 2,k + 3;1+ 1) € H. Now either e(k,k+ 1;1+2) € H or
e(k,k+1;1+2) ¢ H. See figures 3.18 (a) and (b).

Fig3.175. m—1=k+3

k +1 42 k +1 +2

CASE 1: e(k,k+ 1;1+2) € H. By Lemma 1.16, X' —
X'+ (1,1) is a valid move, and by Observation 3.4, X’ —
X'+ (1,1) creates no new cookies. End of Case 1.

X! X! CASE 2: e(k,k+1;1+2) ¢ H. Lemma 1.14 implies
that e(k + 1,k + 2;1+ 2) cannot be in H either. It follows
-1 -1 that X’ + (0, 2) must be the neck of the large cookie. The
L L assumption that there is only one large cookie implies that

Fig. 3.18 (a). Case 1. Fig. 3.18 (b). Case 2. e(k+2;142,1+3) ¢ H. Then we must have e(k + 2,k +
3;1+2) € H. Then, by Lemma 1.16, X' + (1,1) —» X' + (2,1), X’ — X' 4+ (1,0) is the cascade we seek.
|

Lemma 3.16. Let H be a Hamiltonian cycle of an m x n grid graph G. Let X' € Gz Next(H) be a
switchable box, and let P(X,Y’) be the looping H-path of X’. Assume that P(X,Y’) has a switchable
box in Gg \ G2. Then switching X’ splits H into two cycles H; and Hy such that there is v1 € H; N Ry
and v € Ho N Ry with v adjacent to vs.

Proof. Let Z be a switchable box of P(X,Y) in Go \ G2. Orient H. Let (vg,v541) and (vy—1,vy) be
the edges of X’ in H. Define ?1 and ?2 to be the subtrails ?((vmvmﬂ), (vy—1,vy)) and ?((vy, Vy41)s
(Vg—1,vz)) of ?H, respectively. By Lemma 1.16 (i), switching X’ gives two cycles H; and Hs, with
V(Hy) = V(?l \ {vg,vy}) and V(Hy) = V(?z). By Proposition 3.1, Z has a vertex in H; and another
in Hy, and the same holds for X’. Since X’ € G3 and Z € Gqy \ G, by JCT, H; N Ry # (). Similarly,
H>NRy # (. Now the argument in the last paragraph of Lemma 3.7 shows that there must be v; € HiNRy
and vy € Hy N Ry with v; adjacent to vs. O

Proof of Lemma 3.12. For definiteness assume that L is the northern leaf R(k,1). Let P(X,Y") be the
looping H-path following L, with X = R(k — 1,1+ 2) and Y = R(k + 1,1 + 2). By Lemma 3.13, either
there is a cascade that collects L, or a cascade after which P(X,Y") gains a switchable box, with both
cascades having length at most min(m, n) + 1, and both avoiding the j-stack of Ag’s starting at C. If the
former, we are done, so may assume that P(X,Y’) has a switchable box Z. Let J be the large cookie of
G and let N be the neck of J. Note that N; is not a box of P(X,Y). Now, P(X,Y) is either contained
in ext(H) or int(H).

CASE 1: P(X,Y) C ext(H). Then X’ C int(H). By Lemma 3.14, X’ € G3. By Proposition 3.3, Z — X’
is a valid move. By Observation 3.4, Z — X’ does not create additional cookies. Then Z — X',
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L+ (0,1) — L is a cascade that collects L.

CASE 2: P(X,Y) C int(H) .Then X' C ext(H). If Z C G2, by Proposition 3.3 Z — X' is a valid move,
and by Observation 3.4, Z — X’ does not create additional cookies. Then Z +— X', L+ L+ (0,1) is a
cascade that collects L.

Suppose then that Z C Gy \ G2. By Lemma 3.15, we only need to check the case where X’ € Gj.
Note that switching X’ splits H into two cycles H; and Hs. By Lemma 3.16 there is v; € H; N Ry and
vy € Hy N Ry with v1 adjacent to vo. By Lemma 3.5 there is a cascade X' — W, or u, X' — W, with
X’ — W nontrivial. Note that here, X’ plays the role that Z played in Lemma 3.5. Then u, X' —
W,L+ (0,1)— Lor X'— W,L+(0,1) — L is a cascade that collects L.

We have just shown that if P(X,Y) has a switchable box, then the cascade required to collect L has
length at most three. By Lemma 3.13, the cascade after which P(X,Y’) to gains a switchable box has
length at most min(m,n). Thus, at most min(m,n) + 3 moves are required to collect L. O

3.3 Summary

e In Section 3 we proved the MLC and 1LC algorithms. The proof of the ML.C algorithm is fully contained
here, while the proof of the 1LC algorithm depends on Lemma 3.13, whose proof is given in Section 4.

Proposition 3.3 characterizes when double-switch moves are valid and serves as the primary tool for
both algorithms.

The MLC algorithm handles the case where H has multiple large cookies. To collect a large cookie J
with switchable neck N, we look for a switchable box Z in the looping H-path of N;. Proposition 3.8
shows that either such a Z already exists, or a there is single preparatory move that produces one.

The 1LC algorithm handles the case where H has exactly one large cookie and at least one small
cookie. It collects outermost small cookies. Suppose that C' is an outermost small cookie. Either C' can
be collected immediately by a single move, or C' is followed by a j-stack of Ag-types and an A;-type
with switchable middle-box X’. If the latter, let P(X,Y") be the H-path determined by X’. If P(X,Y)
contains a switchable box Z, then C' can be collected by either switching X’ directly (if Z € G3) or by
using Lemma 3.5 to find a cascade of length at most two that enables switching X (if Z € Gy \ G2). In
both cases, a cascade of flips then collects C'. The existence of such a switchable box Z is guaranteed by
Lemma 3.13, whose proof takes up Section 4. e
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4 Looping fat paths, turns and weakenings

Definitions. Let J = {X1, X, ..., X,.} be a collection of boxes in an m X n
grid graph G, and let H be a Hamiltonian cycle of G. We will use the v X
notation G(J) to denote the subgraph of G with vertex set V(G(J)) = V(J) — :
and edge set E(G(J)) = E(J) N E(H). The boxes of G(J) are the boxes
of J. We call G(J) the subgraph of G induced by J.

Suppose that the southern leaf R(k,[) is followed by an A;-type. Let
X =R(k+1,1-2)and Y = R(k — 1,1 — 2). Let P(X,Y) be a southern

looping H-path following the southern leaf R(k,1). The set of all boxes Fig. 4.1. A southern looping fat
in P(X,Y), along with their H-neighbours, is called the H-neighbourhood p:}tl;’ dgéﬂigﬁﬁ; INILI(D )((XY’)/]
of P(X,Y), and is denoted by N[P(X,Y)]. Consider the subgraph F = traced in red.

G(N[P(X,Y)]) of G induced by N[P(X,Y)]. We define a short weakening

of F to be a cascade of length three or less after which, the edge {v(k,l — 1),v(k + 1,1 — 1)} is in
the resulting Hamiltonian cycle of G. We say that F is a southern looping fat path if F has no short
weakening. We define western, northern and eastern looping fat paths analogously.

Assume that G has only one large cookie, and that there is a j-stack of Ay starting at the Ag-type
containing an outermost southern small cookie C. Let L be the leaf in the top (j'") Ay of the stack,
and assume that L is followed by an A;-type with looping H path P(X,Y). Let F = G(N[P(X,Y)]). If
F has no short weakening, we say that F' a southern looping fat path anchored at the outermost small
southern cookie C. Analogous definitions apply for northern, eastern, and western looping fat paths.

We remark that if P(X,Y) has a switchable box then, by Proposition 3.3 and the proof of Lemma
3.12, F has a short weakening, and thus it cannot be a looping fat path.

Throughout the remainder of this section, we assume that G has exactly one large cookie, and that
all looping fat paths considered are anchored at some outermost small cookie.

k

B ‘ We define below a subgraph of G consisting of the union of translations of two adjacent
and perpendicular edges of G. Let r € N, and let the stairs from (k1) to (k+r,l-r) east
be denoted by S_, (k,l;k + 7,1 —r) and be defined as:

]

Fig. 4.2. S_,(k,I; . ) = . N ] A
G, So bkl =) = [ (et b+ 130 + (=) ) U (el + 131 = 1,0 + (7, =) )

Jj=0

We define d(S) = r to be the length of S_,(k,l;k + r,l —r). We say that S_,(k,l;k + r,l — r) starts at
v(k,l) and ends at v(k 4+ r,1 — r). The subscripted arrow indicates the direction from v(k,l) of the first
edge of the subgraph. By choosing an “up”, “down”, “left” or “right” arrow for direction and a sign for
the third and fourth arguments of Sg(k,l; k £ r,1 &= r) we may describe any of the eight possible steps
subgraphs starting at the vertex v(k,[). See Figure 4.2.

Definitions. e Let H be a Hamiltonian cycle of an m x n grid graph G. Let T be the subgraph of H on
the edges S| (k+ 1,0 k', + 1), e(k;1 —1,1) and e(k’ — 1,k;1"), where k' = k+d(T), I’ =1 —d(T), where
d(T) = d(S) + 1 is the length of T and d(T) > 2. We call T a north-east turn. If both e(k, k + 1;1) and
e(k'; U1 + 1) belong to G\ H, call T an open north-east turn. If exactly
one of e(k,k + 1;1) and e(k’;V',I' + 1) is in H, then T is a half-open north- . "
east turn. If both e(k,k + 1;1) € H and e(k';I',l' + 1) € H, then T is a
closed north-east turn. See Figure 4.3 For any north-east turn 7', we say that P
R(k,1 — 1) is the northern leaf of T and R(k — 1,1’) is the eastern leaf of | |_
T. Ife(k,k+1;1) ¢ H we call R(k,l — 1) an open northern leaf of T and if
e(k,k+1;1) € H we call R(k,l—1) a closed northern leaf of T. We note that
the two leaves of a turn will determine its “leaf prefix”: If a turn has a north
leaf and an east leaf then the turn is a north-east turn.

We say that a looping fat path F has a turn (open, half-open or closed)
to mean that there exists some turn 7' of H such that E(F) D E(T).

o —

Fig. 4.3. A half-open
northeast turn.

Sketch of proof of Lemma 3.13. Let H be a Hamiltonian cycle of an

m X n grid graph G. Assume that P(X,Y) is a looping H-path with no switchable boxes, following a
leaf L. It follows that P(X,Y) is contained in a looping fat path F. In Section 4.2, we show that every
looping fat path must have a turn. In Sections 4.3 we show that given a turn, we can find a cascade
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we call a weakening (precise definition in Section 4.3) that collects at least one of the leaves of the turn.
Then we show that after such a cascade, either P(X,Y’) gains a switchable box, or we can extend the
cascade by a single move to collect L. The rest of the Section is organized as follows. Section 4.1 proves
structural properties of fat paths, on which the later sections build. Section 4.2 shows that every fat path
contains a turn (Proposition 4.7). In Section 4.3 we define weakenings, prove that turns have weakenings,
and give a proof of Lemma 3.13. e

4.1 Properties of looping fat paths

Lemma 4.1. Let F = G(N[P(X,Y)]) be a looping fat path. Let W = R(k,l) % be a box of P = P(X,Y)
with the H-neighbour Z = W + ( —1) southward in N[P]\ P. Then:
(a) Z has exactly one H-neighbour in P and W has no other H-neighbour in N[P]\ P.
(b) If W is not an end-box (i.e. X or Y') of P, then the H-neighbours of W in P are W + (—1,0)
and W + (1,0). Furthermore, S_,(k —1,l;k,i —1) e H, St(k+ 1,1 - 1;k+2,l) € H,
and (k,k+1;14+1) € H.
(c) If W is an end-box of P, then e(k,k + 1;1+ 1) € H and exactly one of e(k;l,I + 1) and
e(k+1;1,1+ 1) belong to H.
(d) Z is a leaf or Z is a switchable box in H.
Analogous statements apply when Z is west, north or east of W.

Proof of (a). Note that if Z has more than one H-neighbour in P then we can make an H-cycle. To
see that W has no other H-neighbour in N[P]\ P, assume for contradiction that W has at least two
H-neighbours in N[P]\ P.

If W is an end-box of P, then, by definition of A;, W has at most two H-neighbours, and at least
one of them must belong to P, contradicting our assumption that W has at least two H-neighbours in
N[P]\ P.

If W is not an end-box, then W must have four H neighbours: two in N[P]\ P and two in P. By
definition of a looping fat path, at least one of the neighbours of W in P, say W/, is not an end-box. But
then W’ must be switchable, contradicting that F' is a looping fat path. [

oo T Proof of (b). First we show that the H-neighbours of W

are W + (1,0) and W + (—1,0). Assume for contradiction

" + — +1 that W + (1,0) is not an H-neighbour of W. Then the H-
FW | neighbours of W in P must be W + (—1,0) and W + (0,1).
e ‘ _| |_ It follows that S_,(k — 1,l;k, 0l —1) € H and S_(k — 1,1 +
z . 1;k,0l +2) € H. Note that, by the definition of A; and

Fig. 4.4 (a). Fig. 4.4 ( looping fat paths, W + (—1,0) is not an end-box of P. But

then W + (—1,0) is a sw1tchable bOX of P, contradicting that F' is a looping fat path. Therefore, the
H-neighbours of W in P are W + (—1,0) and W + (1,0). It follows that S_,(k —1,l;k,l — 1) € H and
Sy(k+1,1l—1;k+2,1) € H, and by part (a), (k,k+ 1;1+ 1) € H. See Figure 4.4 (a) and (b). End of
proof for (b).

k +1 k +1 +2 k +1 -1 k +1 +2

+1 +1
| W = | W =
H 4 HH 4 _| |_
-1

Fig. 4.5 (a). Fig. 4.5 (b). Case 1: Fig. 4.5 (c). Case 1: Fig. 4.5 (d). Case 2.
F is eastern. F is southern.

Proof of (¢). By part (a) and the assumption that W is an end-box of P, W has exactly one H-neighbour
in P and no other H-neighbours in N[P]\ P. It follows that W has exactly two edges in H and two
edges not in H. Assume for contradiction that the other edge of W not in H is e(k,k + 1;1+ 1). But
then e(k;1—1,1) € H and e(k+1;1—1,1) € H and the W is switchable, contradicting that F is a looping
fat path. It follows that e(k,k+1;1+1) € H. Since W has exactly two edges in H, we have that exactly
one of e(k;l,1+ 1) and e(k + 1;1,1 4+ 1) belong to H. See Figure 4.5 (a). End of proof for (c).

Proof of (d). W is either an end-box of P or it is not.

2W = R(k,1) is not related to the southern leaf R(k,[) in the definitions in page 18.

24



CASE 1: Wis an end-box of P. By part (c), we may assume WLOG that e(k;l,l +1) € H and e(k +
1;1,1+1) ¢ H. Then F is eastern or southern. Suppose that F is eastern. Then e(k+1,k+2;1+1) € H.
It follows that Sy(k+1,1—1;k+2,1) € H. But then W+(1,0) € P is switchable, contradicting that F'is a
looping fat path. So F' must be southern. Then e(k;{—1,1) € H. It follows that St (k+1,{—1;k+2,1) € H.
Now, either e(k,k+ 1;1 — 1) € H, or e(k,k+ 1;1 — 1) ¢ H. Either way, (d) is satisfied. See figures 4.5
(b) and (c¢). End of Case 1.

CASE 2: W is not end-box of P. By part (b), the H-neighbours of W in P are W+ (—1,0) and W +(1,0)
and we have that S, (k—1,0;k,1—1) € H, S4(k+1,l—1;k+2,1) € H. Then, either e(k,k+1;1—1) € H
or e(k,k+1;1—1) ¢ H. Either way, (d) is satisfied. See Figure 4.5(d). O

Definitions. Let G be an m x n grid graph, let H be a Hamiltonian cycle of G and let J be an H-subtree
of an H-component of G. We say that a box Z of J is a border box of J if Z is an H-neighbour of a
box Z' € G_1 \ J. We will call the edge that Z and Z’ share a shadow edge of J. We call the set of all
shadow edges of J the shadow border of J and denote it by hb(J). We define the shadow of J to be the
graph h(J) with vertex set V(h(J)) = V(J) and edge set E(h(J)) = (E(J) N E(H))U hb(J). The boxes
of the shadow of J are the same as the boxes of J. We note that shadow edges cannot be incident on
boxes of P.

Observation 4.2. Let F = G(N[P(X,Y)]) be a looping fat path. Then the shadow edges of the H-
subtree N[P] can only be incident on boxes of N[P]\ P. Moreover, exactly one of the two boxes incident
on a shadow edge of N[P] belongs to N[P]\ P, and the other belongs to G_; \ N[P].

Lemma 4.3. Let G be an mxn grid graph, let H be a Hamiltonian cycle of G and let F = G{N[P(X,Y)])
be a looping fat path in G. Then E(h(F')) is a Hamiltonian cycle of h(F').

Proof. Since every vertex of h(F') is incident on some edge of E(h(F)), it is sufficient to show that
E(h(F)) is a cycle. We will prove:

(i) Every vertex of h(F') has degree two in h(F).

(ii) E(h(F)) is connected.
Proof of (i). Let v =wv(k,l) € V(F) and let R(k — 1,1 — 1) = Z. Either v has a shadow edge incident on
it or it does not.
s CASE 1. v has no shadow edge incident on it. Then there are two edges e; and e of
e H incident on v. These edges are either colinear or not colinear, so there are two cases

¢ to check.
Z |e

_plig_ 16. Case1.1. CASE 1.1. ey and es are colinear. For definiteness assume that e; = e(k;l — 1,1),

es = e(k;l,l + 1) and that Z 4 (1,0) € F. Since e(k,k + 1;1) is not a shadow edge,
Z+(1,1) € F as well, v(k;l — 1) € F and v(k;1l + 1) € F. Since e(k — 1,k;1) is not a shadow edge, we
have that degy,py(v) = 2. See Figure 4.6. End of Case 1.1.

k +1 k +1
CASE 1.2. ey and ez are not colinear. For definiteness assume P P
that e; = e(k;1 —1,1), e2 = e(k,k + 1;1). Then Z 4+ (1,0) € F or . ‘

Z+4(1,0) ¢ F. al @ al @

If Z+(1,0) € F, then v(k;l—1) € Fand v(k+1;1) € F. Asv T 470, Case Big, 47 (b). Cas
has no shadow edges incident on it, it follows that deg,ry)(v) = 2. 1.2.1g'Z N (011) ag; 1.2.1g'Z (0,21 ZS;
See Figure 4.7 (a).

If Z+(1,0) ¢ F, then at least one of Z, Z+(0,1) and Z+(1, 1) belong to F. If Z € F, since e(k—1, k;1),
is not a shadow edge, we have that Z + (0,1) € F. Similarly, Z + (1,1) € F. Then v(k;l — 1) € F' and
v(k +1;1) € F. As v has no shadow edges incident on it, it follows that deg,(r)(v) = 2. The cases
where Z + (0,1) € F and Z + (1,1) € F are similar and we omit them. See Figure 4.7(b). End of Case
1.2.

CASE 2. v has a shadow edge incident on it. For definiteness, let e(k;l — 1,1) be the shadow edge on
which v is incident. There are three possibilities: e(k—1,k;1) € H and e(k;1,14+1) € H,e(k—1,k;1) € H
and e(k,k+1;1) € H, and, e(k;1,l+ 1) € H and e(k,k + 1;1) € H. By symmetry, we only need to check
the first two.

CASE 2.1: e(k—1,k;1) € H and e(k;l,1+1) € H. Then e(k,k + 1;1) ¢ H. By Observation 4.2, exactly
one of Z and Z+(1,0) belongs to N[P(X,Y)]\ P(X,Y) = N[P]\ P and the other belongs to G_1 \ N[P].
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Note that by Lemma 4.1 (d), Z + (1,0) ¢ N[P] \ P. Then we must have Z + (1,0) € G_; \ N[P] and
Z € N|PJ]\P. So, we have that v(k—1,1) € F and v(k,l—-1) € F. By Corollary 1.9, Z+(0,1) € G_1\N[P)].
In order to have deg,(r))(v) = 2 we need to check that e(k,k + 1;1) and e(k;[,! + 1) do not belong to
h(F). See Figure 4.8 (a).

Assume for contradiction that e(k, k+1;1) is a shadow edge

koot kO +1 of F. By Observation 4.2, Z + (1,1) € N[P]\ P. Since F is

| | an H-subtree, there is an H path P(Z Z +(1,1)) contained in

¢ ® il e SO F. But then P(Z Z+(1,1)),Z+(1,0), Z is an H-cycle, which
z i zZ : contradicts Proposition 1.3. Thus e(k, k + 1;1) is not a shadow

Fia. 4.8 (a’ Case 21, Fig. 4.8 (), Case 2.1, e@ge of F. Tt follows that Z + (1,1) belongs to G_1 \ F. See
ek, k+1;0) e ip(F).  Figure 4.8 (b).
Similarly, if e(k;l,l + 1) € h(F'), then by Corollary 1.9,
Z 4+ (1,1) € N[P] again, and we obtain the same contradiction as above. End of Case 2.1.

CASE 2.2: e(k — 1,k;1) € H and e(k,k + 1;1) € H. Then A S
e(k;l1,l +1) ¢ H. By Observation 4.2, exactly one of Z and E :

Z + (1,0) belongs to N[P]\ P and the other belongs to G_; \ L= L=
N[P]. By symmetry, we may assume WLOG that Z € N[P]\ P Z Z

and Z + (1,0) € G_; \ N[P]. By Corollary 1.9, Z + (0,1) €  pig. 49 (a’. Case 22, Fig. 49 (b’. Case 2.2.
G -1\ N[P]. In order to have degy,(r)(v) = 2 we need to check e(k;l,1+1) € hb(F).

that e(k; 1,1+ 1) and e(k, k + 1;1) do not belong to h(F).

Assume for contradiction that e(k;l,l + 1) is a shadow edge of F. Then Z + (1,1) € F. But now,
if we orient H as directed cycle Ky, Z and Z + (1,1) are on different sides of I? H, contradicting
Corollary 1.11. Therefore, e(k;1,1+ 1) cannot be a shadow edge of F'. See Figure 4.9 (b). It follows that
Z+(1,1) e G_1 \ N[P].

Similarly, if e(k,k + 1;1) € h(F), then by Corollary 1.9, Z + (1,1) € N[P] again, and we obtain the
same contradiction as above. End of Case 2.2. End of Case 2. End of proof for (i).

Proof of (ii). Let u,v be vertices in F. Orient the subpath P = P(u,v) of H from u to v, labelled
u = Ug, U1, .... If E(P)C E(h(F)), then we're done. Otherwise, let s be the number of shadow edges of
h(F) that are incident on P. Let w;, be the first vertex of P after u such that u;, € F but u;, 41 ¢ F.
Let uy be the first vertex of P after u;, that is in F'. For j € {2,...,s} let u;; be the first vertex of P
after (G such that u;; € F but u;;11 ¢ F', and let i be the first vertex of P after u;; that is in F.
Note that P(u;,v) C P(u,v) and that P(u, ,v) is contained in F.
We claim that for 1 < j < s, {uij,ui/j} is a shadow edge of F. It follows from this claim that
Puywiy )y (wiyy wig )y Puiy, iy )y (Wigy wity)y oy Puir i), (Wi, wir), Puig ) is contained in F. It remains
to check that the claim is true.
Proof of Claim. For definiteness let u;; = v(k, 1), us, 41 = v(k+1,1). Let R(k—1,1—1) = Z. Since u;, 41
is not in F', Z+(1,0) and Z 4 (1,1) belong to G_1 \ F'. Since u;, is in F, at least one of Z and Z +-(0,1)
is a box of F.

We will first show that w;; 1 = v(k — 1,1). Assume for contradiction that w;; 1 = v(k,l — 1) or
ui,—1 = v(k,l +1). By symmetry we only need to check one of the two. For definiteness assume that
’LLZ'].,1 = ’U(]f,l — 1)

4k 41 a4k 41 Note that if Z + (0,1) € F, by Observation 4.2, Z + (0,1) €

N[P(X,Y)]\ P(X,Y). But then Z + (0,1) is neither a leaf nor

VI “‘;f_)ﬂ.? a switchable box, contradicting Lemma 4.1 (d). It remains to check

7 ) the case where Z + (0,1) € G_1\ F and Z € N[P(X,Y)]\ P(X,Y).

W 1 e —_ See Figure 4.10 (a). Using Lemma 4.1 (d) again, we have that

= = Z+(0,-1) e P(X,Y),e(k—1;1—-1,1) € Hand e(k—1,k;1—1) ¢ H.

- -2 - -2 By Lemma 4.1 (b) and (c), we have that e(k — 1, k;1 —2) € H. Note
Fig. 4.10 (a). Fig. 4.10 (b).

that if Z + (0, —1) is not an end-box of P(X,Y), by Lemma 4.1 (b),
e(k,k+1;l—-1)e H,e(k—1;1—2,1—1) ¢ H and e(k;l —2,l — 1) ¢ H. But then after Z — Z + (1,0),
Z +(0,—1) € P(X,Y) is switchable, contradicting that F' is a looping fat path. See Figure 4.10(b) It
remains to check the case where Z 4 (0, —1) is an end-box of Z. WLOG assume that Z 4 (0, -1) = X.
There are three possibilities: X =Y + (2,0), X =Y + (0, —2), and X =Y + (-2,0).

CASE 1: Y = X +(2,0). Then F must be northern, so e(k+1;1—2,1—1) € H and e(k+1;1—1,1) € H

But then there is an H-cycle P(Y, X), X + (0,1),X 4+ (0,2), X + (1,2), X + (2,2), X + (2,1),Y, which
contradicts Proposition 1.3. See Figure 4.11 (a). End of Case 1.
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CASE 2: 'Y = X 4+ (0,—2). Then F can be

western or eastern. U, u, U Uiy
) ) ¢ O0——0
CASE 2.1: F is western. Then e(k — 2,k — Z I 4 zZ1
1;1-2) € Hand e(k;1—2,1—1) € H. It follows " Tl "
X Y E = X X = =

that X +(—1,0) € P(X,Y) and that e(k —2;1— | ) )
2,1—1) ¢ H. But then X +4(—1,0) is switchable, Fig. 4.11 (a). Case 1. Fig. 4.11 (b). Fig. 4.11 (c).
contradicting that F' is a looping fat path. See Case 2.1. Case 2.2.
Figure 4.11 (b). End of Case 2.1.

CASE 2.2: F is eastern. Then e(k — 1;1 — 2,1 — 1) € H and e(k,k + 1;1 —2) € H. It follows that
e(k,k+1;1—1) € H. But then X + (1,0) € P(X,Y) is switchable, contradicting that F' is a looping fat
path. See Figure 4.11 (c). End of Case 2.2. End of Case 2.

-1 k +1
‘ P |“z,- u, .y, CASE 3: Y = X+(—2,0). Then F must be northern, so e(k—1;1—2,1—1) €
o - H. It follows that e(k,k +1;1 — 1) € H. But then X + (0,1) — X + (1,1),
Y X X + (—1,0) — X is a short weakening, contradicting that F is a looping
-2 fat path. See Figure 4.12. End of Case 3. This concludes the proof that
ui;—1 = v(k—1,1).

212, Case 4. Now, by Corollary 1.9, exactly one of Z and Z+ (0, 1) belongs to F. WLOG,
assume that Z € F. By Observation 4.2, since Z + (1,0) isnot in F, Z € N[P(X,Y)]\ P(X,Y). Note
that this means that e(k;l — 1,1) is a Shadow edge of F. By Lemma 4.1 (d), e(k — 1,k;l — 1) € H,
e(k—1;1—1,1) ¢ H and Z + (—1,0) € P(X,Y).

It remains to check that Uy = v(k,1—1). Assume for contradiction that u;; = +1 L

v(a,b) # v(k,l —1). For definiteness assume that U1 = v(a + 1,b). Note Uy, Uy

that, by the proof that u;, 1 = v(k — 1,1), we have that Ui 41 = v(a —1,b). ‘ :_;_._)_.

Let Z' = R(a — 1,b). By Corollary 1.9, exactly one of Z' and Z’' + (0,—1) et

belongs to F. Note that if Z" ¢ F, then Z'+ (0, —1) = ®((ui, uy11), left) € .

F. But then, Z € F and Z = ®((ui;-1,us,),right) contradicting Corollary +1

1.11. Thus we must have Z’' € F. = 27w, o,
By Lemma 4.1 (d), we must have e(a—1,a;b+1) € H, e(a—1;b,b+1) ¢ H ’ — e

and Z' + (-1,0) € P(X,Y). Let P(Z + (1,0),Z" + (1,0)) be the H-path .

from Z + (1,0) to Z' + (1,0) contained in the H-walk CIJ([_g(((uij,uin), (uig_l,uig)),ﬁ'ghﬁl)l& Observe
that P(Z + (1,0), 2’ 4+ (1,0)) C G_1 \ F. Since F is an H-subtree, F' is H-path-connected so there is an
H-path P(Z',Z) contained in F'. But then, then P(Z’, Z), P(Z +(1,0), Z’ + (1,0)) is an H-cycle, which
contradicts Proposition 1.3. See Figure 4.13. Thus we must have uy = v(k,l—1). O

Proposition 4.4. Let G be an m x n grid graph, let H be a Hamiltonian cycle of G and let F' =
G(N[P(X,Y)]) be a looping fat path in G following a leaf L. Then h(F) does not have consecutive
colinear edges other than the left and right collinear edges in the A;-type of F' following L.

Proof. We need to check that h(F) does not have consecutive colinear edges in the case where one of
those colinear edges is a left or right colinear edge of the A;-type of F' and in the case where neither of
those colinear edges is a left or right colinear edge of the A;-type of F. We divide the proof into Lemmas
4.5 and 4.6.

Lemma 4.5. The shadow of F' does not have a pair of consecutive colinear edges o

in the case where one edge of the pair is one of the left or right colinear edges of ﬂ
the Aj-type that follows L.

Proof. For definiteness, assume that F' is a southern looping fat path following ] I_ o
the leaf R(k—1,1+3). See Figure 4.14. Assume for contradiction that h(F') does Y *

have consecutive colinear edges and one of those edges is one of the right or left Fig. 4.14.
colinear edges of the A;j-type that follows e(k — 1,k;1 + 3). For definiteness, assume that one of those
consecutive colinear edges is one of the right colinear edges of the A;-type that follows L. Then, either
e(k;1+ 1,14 2), e(k;1+ 2,14 3) is a pair of consecutive colinear edges or e(k;l — 1,1), e(k;l,l+ 1) is a
pair of consecutive colinear edges. If the former, then deg, gy (v(k,l+2)) = 3 contradicting Lemma 4.3,
so we only need to check the latter. Suppose then, that e(k;l — 1,1), e(k; 1,1+ 1) is a pair of consecutive
colinear edges. Note that X and X + (0, —1) belong to F. If the edge e(k;l — 1,1) is in h(F) then it is
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either a shadow edge or it belongs to H. We show that both cases lead to contradictions.

CASE 1: e(k;l —1,1) € H. Then exactly one of +2 +2

X +(0,-1) and X + (1,0) must belong to P. Y X Y
+1 T +1

CASE 1.1: X + (0,—1) € P. Note that if e(k + i

1;1,1+1) € H, then X + (0, —1) € P is switchable, ~ ° ‘_ ‘

contradicting the definition of a fat path, so we |

only need to check the case where e(k + 1;1,1 + Fig. 4.15 (a). Case 1.1. Fig. 4.15 (b). Case 1.2.

1) ¢ H. Then Sy(k+ 1,0l —1;k+2,1) € H and

Si(k+1,14+2;k+2,1+1) € H. Now exactly one of X 4 (0,—2) and X + (1, —1) belong to P. Suppose

that X +(0,—2) € P (Figure 4.15 (a)). Then e(k,k+1;1—1) € H or e(k,k+1;1—1) ¢ H. If the former,

then X + (—2,0) must be an end-box of P, but this contradicts the fact that the other end-box of P is

Y = X + (—2,0); and if the latter then X + (0, —2) is switchable, contradicting that F is a looping fat

path. The case where X + (1, —1) belongs to P is very similar so we omit the proof. End of Case 1.1

CASE 1.2: X +(1,0) € P. Then X + (0,—1) € N[P]\ P and X + (0,—2) ¢ N[P]. It follows that
e(k,k+1;1) is a shadow edge of F. But then deg, (g (v(k,1)) = 3 contradicting Lemma 4.3. See Figure
4.15 (b). End of Case 1.2.

CASE 2: e(k;1—1,1) € hb(F). Let Z = R(k — 1,1 —1). Then exactly one of Z and Z + (1,0) belongs to
N[P]\ P.
ko1 If Z € N[P]\ P then Lemma 4.3 implies that e(k —

-1 k -1
N N N N 1,k;l) ¢ E(h(F)), but this contradicts Lemma 4.1 (d)
" - (Figure 4.16 (a)); and if Z + (1,0) € N[P] \ P, then
Lemma 4.3 implies that e(k,k + 1,1) ¢ H, but this also
‘ 1 L
zZ 3

i contradicts to Lemma 4.1 (d) (Figure 4.16 (b)). End of

% Z Case 2. I
Fig. 4. . Case 2. Fig. 4.16 (b). Case 2.
¢ 2461 61\’([‘62]\1?e ’ Zli (i,l(?)(e)N[pa]Sf ;_ Lemma 4.6. The shadow of F' does not have a pair of

consecutive colinear edges in the case where neither edge
of the pair is a left or right colinear edge of the A;-type that follows L.

Proof. It is a fact that none of the boxes of P discussed in this lemma can be end-boxes of P. The
justifications are straightforward but distracting so we will omit them and use this fact repeatedly and
implicitly throughout the proof.

Assume for contradiction that there is a pair of consecutive collinear edges in h(F) where neither
edge of the pair is a left or right colinear edge of the A;-type that follows L. For definiteness, we may
assume that these edges are the horizontal edges e(k’ — 1, k’;1") and e(k', k' +1;1’). Let R(K' —1,I') = Z.
Corollary 1.9 implies that exactly one of Z and Z + (0, —1) is in F. For definiteness, assume that Z € F.
Then, by Lemma 4.3, e(k’;1',I' + 1) is neither in H nor in hb(F). Now, either both e(k’ — 1,k’;1') and
e(k', k" + 1;1') belong to H, or at least one of them belongs to hb(F).

CASE 1: Both e(k' — 1,k";1") and e(k', k' + 1;1') belong to H. By Lemma 4.3, e(k’;1',I' + 1) is not a
shadow edge of F. Then, Lemma 4.1 (a) implies that either exactly one of Z and Z + (1,0) belongs to
NI[P]\ P or neither does.

1w 1w
CASE 1.1: Neither Z nor Z + (1,0) belongs to N[P] \ P. This ’ o ’ o
implies that Z and Z + (1,0) are in P (Figure 4.17 (a)). Now, at p p
least one of e(k’ — 1,k";I' + 1) and e(k’, k' + 1;1' + 1) belongs to H.

For definiteness assume that e(k’ — 1,k’;1' + 1) € H. But then Z

is a switchable box in P, contradicting the definition of a fat path. Fig. 4.17 (a). Fig. 4.17 (b).
End of Case 1.1 Case 1.1. Case 1.2.

CASE 1.2: Ezactly one of Z and Z+ (1,0) belongs to N[P]\ P. For definiteness, assume that Z+(1,0) €
N[P]\ P. Then Z € P. But now, the fact that Z is not an end-box and Lemma 4.1 (b) imply that
e(k' k' + 1;1') ¢ H, contradicting the assumption of Case 1. End of Case 1.2. End of Case 1.

CASE 2: At least one of e(k'—1,k';1") and e(k', k' +1;1") belongs to hb(F'). Either e(k'—1,k';1") € hb(F),
or e(k' —1,K';1") ¢ hb(F).
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o o , " CASE 2.1: e(k' —1,k';1') € hb(F). Tt follows
——_— _— , that Z € N[P]\P. But then Z can be neither
switchable nor a leaf, contradicting Lemma

4.1(d). See Figure 4.18 (a). End of Case 2.1.
Fig. 4.18 (a) Case 2.1 Fig. 4.18 (b). Fig. 4.18 (c).

Case 2.2(a). Case 2.2(b).
CASE 2.2: e(k’ — 1,k';l") ¢ hb(F). Then

we must have that e(k’ — 1,k";1') € H and
e(k' k' + 1;1") € hb(F'). Now, either Z 4 (1,0) € F or Z + (1,0) ¢ F.

CASE 2.2(a): Z + (1,0) € F. Then, by Observation 4.2, Z + (1,0) € N[P]\ P. But Z + (1,0) can be
neither switchable nor a leaf, contradicting Lemma 4.1(d). See Figure 4.18 (b). End of Case 2.2(a).

CASE 2.2(b): Z+(1,0) ¢ F. Then, Z must belong to N[P]\ P. This means that e(k’;1’,l’ +1) € hb(F),
which, as we, as we noted in the second paragraph of the proof, is not possible. See Figure 4.18 (¢). End
of Case 2.2(b). O

This completes the proof of Proposition 4.4. An immediate consequence of it is that the A;-type following
L is the only A;-type in F', so we can refer to it as the A;-type of F.

4.2 Turns

In this section we show that every looping fat path F' must have a turn. We do this by showing that
the shadow h(F') of a looping fat path F' must have a (necessarily closed) turn and note that this would
immediately imply that F' must have a turn.

In Lemma 4.7, Lemma 4.8, and Corollaries 4.9 (a) and (b) below, we will often use the definition of
the shadow of southern looping fat path, Proposition 4.4, and the fact that the A;-type of F' is unique
in F, and write (DsFP) whenever we appeal to them.

P Lemma 4.7. Let H be a Hamiltonian cycle of an m x n grid graph G and
let h(F') be the shadow of a looping fat path of G. Then h(F') has at least
one turn 77 such that both leaves of T} belong to F.

g/

Y X
- Proof. For definiteness assume that F' = G{N[P(X,Y)]) is a southern loop-
-2

ing fat path following R(k’ — 1,1’ + 1) southward, with X = R(k’,I’ — 1) and
Y = R(k' —2,I' = 1). By Lemma 4.3, E(h(F)) is a cycle. Orient E(h(F))
Fig. 4.19. as a directed trail K so that the first edge of K is (K, ), vk + 1,1")).
With this orientation we can give a direction - N, S, E or W - to edges in
?, defined as the position of the head of an edge relative to its tail. See Figure 4.19.

Our choice of direction for the first edge and Lemma 1.6 imply that Boxes(@(?, right)) C Boxes(F')
so the boxes of h(F) are on the right side of the oriented edges of K. We call this fact (RSK) for reference.
We sweep the edges of K in the direction of the orientation starting at v(k’,1’). We observe that we must
encounter at least one west edge ey, since Y is west of X. Let ey = eg = e(k — 1, k; 1) be the first west

edge encountered, let e; be the edge preceding ey in the sweep, let e; be the edge preceding the edge e;_;
in the sweep and let (v(k', 1), v(k' + 1,I')) = es.

In this proof we will use the fact that ey is the first west edge encountered (1stW) several times.

By (DsFP), eg was immediately preceded by a south edge or k x
a north edge. X Yo v Y. X
CASFE 1: ey is southern. We shall find a northeastern turn. J J
By (DsFP) and (1stW), the preceding edge es must be east- > >
ern; By (DsFP) and (1stW), ez has to be southern. By e Y e, Y
(1stW) e4 cannot be western. Then ey is southern or ey is ¢ < e

Fig. 4.20 (a). Case Fig. 4.20 (b). Case
castern. 1.1. ®(eq, right) = X. 1.1. ®(eq, right) = Y.

CASE 1.1: ey is southern. Then, by (DsFP) and (RSK), we

have that ®(e4,right) = X or ®(eq,right) = Y. But the former contradicts Proposition 4.4, and the
latter implies that degy, g (v(k,l + 1) = 3, contradicting Lemma 4.3. See Figure 4.20. Thus, e4 must be
eastern. End of Case 1.1.
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CASE 1.2: ey4 is eastern. By (DsFP), e5 is not eastern. Then es is northern or ej is southern.

CASE 1.2(a): es is northern. Then there is a northeastern turn 7 on the edges ey, ..., e5 with both
leaves contained in F'. See Figure 4.21 (a). End of Case 1.2 (a).

K/ K K
CASE 1.2 (b): e5 is southern. Let Q(j) be
k o the statement: “e; is southern and e;4 is
X Yes 1 F]’O :I, eastern”. Now, either Q(j) is true for each
. . je{1,3,...,s—1} (Case 1.2(by)), or there
e. Y . . is some jg € {5,9,...,s—1} such that Q(5)
> — — for each odd j < jg, but Q(jo) is not true
, i)(_v ﬁ(_ve 3,(_"@ (Case 1.2(b)).
Fig. 4.21(a). Fig. 4.21(b). Case 1.2(b1).  Fig. 4.21(c). Case 1.2(bz).

CASE 1.2(b1). Then we have a northeast-
ern turn 77 on the edges ey, ..., e, e(k’;" — 1,1') with both leaves contained in F. See Figure 4.21 (b).
End of Case 1.2(by).

CASE 1.2(by). By (DsFP), ej, is not eastern. If e;, is southern, then we run into the same contradiction
as in Case 1.1; and if ej, is northern then we have a northeastern turn 77 on the edges ey, ..., e, with
both leaves contained in F' (Figure 4.21 (c)). End of Case 1.2(b2). End of Case 1.2 (b). End of Case 1.2.

CASE 2: ey is northern. We shall find S

a southeastern turn with both leaves con- P e

tained in F. By (1stW) and (DsFP), ey — ¢

is eastern. By (DsFP), e3 is northern. L & e, 1 =

Note that (RSK) and Lemma 4.1 (d) im- ‘ N Ae“l 1 N " N

ply that ®(eq,right) € P and e; € H. . €>2 |1|| T estf_ .

By Lemma 4.3, e(k,k +1;1— 1) ¢ H and e A x =€ =

e(k,k+1;1) ¢ H. Ife(k+2;1—1,1) € H, 2 mn 3

then ®(eq,right) is switchable and in P, Aey

contradicting the definition of a fat path, so i i -4
Fig. 4.22(a). Case 2. Fig. 4.22(b). Case 2.1

we may assume that e(k +2;1—1,1) ¢ H.
Then we must have that S| (k + 1, + 1;k + 2,1) € H, Sy(k+ 1,1 — 2;k + 2,1 — 1) € H and that
e(k+2;1—1,1) € hb(F).

By (1stW), e4 is not western. If e4 is northern then (DsFP) and (RSK) imply that ®(es, right) = X.
But then L = R(k — 1,1) and then degy (v(k — 1,1)) = 3, contradicting H is Hamiltonian. See Figure
4.22 (a). Then eq must be eastern. By (DsFP), e5 is not eastern. Then e5 is southern or northern.

CASE 2.1: e5 is southern. By (RSK) and Lemma 4.1 (d), we have that ®(e4,right) € P, and that
es € H. By Lemma 4.3, e(k—2;1—3,1—2) ¢ Hande(k—1;1-3,1—-2) ¢ H. Ife(k—2,k—1;1-3) € H,
then ®(e4,right) is switchable and in P, contradicting that F is a fat path, so we may assume that
e(k—2,k—1;1-3) ¢ H. It follows that S_,(k—3,1—3;k—2,1—4) € H and that S4(k—1,1-4;k+2,l-1) €
H. Then there is a southeastern turn on e(k—2;1—4,1-3), Sy(k—1,1—4;k+2,1—1) € H, e(k+1,k+2;1)
with both leaves in F. See Figure 4.22 (b). End of Case 2.1

oy o+ e 41 42 CASE 2.2: e5 is northern. Let Q(j) be the statement: “e; is northern
and e;41 is eastern”. Now, either Q(j) is true for each j € {1,3,...,s—
o . 1} (Case 2.2(a)), or there is some jo € {5,7,...,s — 1} such that Q(j)
A = for each odd j < jo, but Q(jo) is not true (Case 2.2(b)).

» CASE 2.2(a). Then (DsFP) and (RSK) imply that ®(eg, right) = X.
le.®) This means that e(k’;1' — 2,1’ — 1) € H, e(k’;1' — 1,I') € H, and that
o ®(es—1,right) € h(F). By Proposition 4.4, e(k’;1' —3,I' —2) ¢ H.
J Note that if e(k'—1,k’;1'—2) € H, then P(X,Y) is the H-path X, X+
! (0,-1), X+(0,-2), X+(-1,-2), X +(-2,-2), X +(—2,—1),Y. This
" - contradicts our finding that ®(es_1,right) € hA(F). Then it must be
z the case that e(k'—1,%’;1'—2) ¢ H. Then we must have e(k’, k'+1;1'—
-3 2) € H. It follows that S4(k'+1,'—2; k+,1—1) € H. Then thereisa
southeastern turn 77 on e(k';1' —2,1'—1), S, (K'+1,I'=2; k+2,1-1),

e(k+ 1,k 4 2;1) with both leaves contained in F. See Figure 4.23. End of Case 2.2(a).

<Y

Fig. 4.23. Case 2.2(a).
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CASE 2.2(b). By (DsFP), ej, is not eastern. Suppose that ej, is northern (in orange in Figure 4.25).
The assumption that Q(jo) is false implies that e; 41 is not eastern and (1stW) implies that ej, 1 is
not western. It must be the case that e;,4+1 is also northern. By (DsFP) and (RSK), we have that
®(ej,,right) = X. But then jo — 1 = s, contradicting the assumption that jo € {5,...,s — 1} (in orange
in Figure 4.24). Thus ej, cannot be northern. It follows that e;, is southern. Let e;, = e(k”;1”,1" + 1).

Using the same arguments as in Case 2.1, we find that e(k”;1” — 1w 41 e 41 42
1,I"Y¢ H,e(k"+1;1"—1,1") ¢ H, e(k", k" +1;1"—1) ¢ H, and that
®(jo — 1,right) € P. Tt follows that S_, (k" — 1,1 — 1; k", 1" —2) € o ,
H and that Sy(k” + 1,1" — 2,k + 2,1 — 1) € H. Then there is a A =
southeastern turn 77 on e(k”; 1" —2,1"—1), St (k" +1,1"—2; k+2,1-1), gl -1
e(k+1,k+2;1). with both leaves contained in F' (Figure 4.25). End I
of Case 2.2(b). End of Case 2.2. End of Case 2. O ejOL: .

o
Definition. Let G be an m x n grid graph, let H be a Hamiltonian A EJ
cycle of G, and let F' be a looping fat path in G. We say that a turn j "
T of h(F) is admissible if:
(i) no leaf of T is an end-box of F', and

(ii) both leaves of T belong to F. Fig. 424 Case 2.2(b) -3

Lemma 4.8. Let H be a Hamiltonian cycle of an m x n grid graph G and let h(F') be the shadow of a
looping fat path of G. Then h(F') has an admissible turn.

Proof. Let F', X, Y, ? and ey, ey, ...e5 be as in Lemma 4.7, including the assumption that F' is southern
and (RSK).

CASE 1: e is southern. By Case 1 in Lemma 4.7, there is a northeastern turn 7;. We continue sweeping

, beginning from ey, until we find the first northern edge ey in the subtrail ?(ew, en) of K, where
eN = (E,ZA,Z\+ 1) = ép. We write (1stN) to refer to the fact that ey is the first northern edge encountered
after ey, whenever we appeal to it. Let é&1 be the edge preceding éj in the sweep, let €; be the edge
preceding the edge €;_7 in the sweep and let é;11 = eyy. Then €7 is western or €; is eastern.

Before we consider each case, we will check that the subtrail 0 1 2
(éo,€) of E does not contain the right or left colinear edges of .

the Aj-type of F. To this end, we will translate H by (—k', =)

to simplify calculations. (DsFP) and (1stW) imply that for every

eastern edge in the subtrail ?(es,el) of K there is at most one
northern or southern edge. Denote by veng the head of the edge ey .
The assumption that e; is southern and the fact that a shortest turn
has length two imply that venq is contained in the region U enq, de-
termined by x > 1 and |y + 2| <z — 1 (Eq.1). Let veng = v(a,b).
It follows that ?(@,é@) is contained in the region U bounded by
y<b+1land|r—al] <b+1-—y (Eq.2). See Figure 4.35.

Fig. 4.25. Case 3.2(a) The line
) : y —x + 2 =0 in red; Uy, ena shaded
We will check that Uy and the colinear edges of the A;-type of orange, Uz shaded blue.

F lie on two different sides of the line y = z — 2. By (Eq.1) we have
that b < a—3 and by (Eq.2) we have that y < z—a+b+1. Let (z,y) € Us. Then y—2+2 < —a+b+3 <0,
so Us lies below the line y — x + 2. Plugging in the values of the coordinates of the vertices A;-type

v(x1,y1), we see that they lie above the line y = 2 — 2. This shows that f(}(c?t,e?o) does not contain
colinear edges. We will write (NCE) whenever we appeal to this fact. Note that (NCE) implies (i).

CASE 1.1: é1 is western. Note that €1 # ew, otherwise we get a

_eio_tio: . cycle on ey, ey, e1,e2. By (DsFP), €3 is not western and by (1stN),

| A € is not northern, so é3 must be southern. By (NCE) é3 cannot

LAY be southern. Then é3 must be western. If €3 = ey, then we

(}_)’ have a southeastern turn T on éy, ..., €3, €1, ea, satisfying (i) and,

pendes by (RSK), (ii) (in orange in Figure 4.27), so we may assume that
o YO €3 # ew. By (DsFP), €3 is not western and by (1stN), é; is not

northern. Then é; is southern.
Let Q(j) be the statement: “¢; is western and €7 is southern”.

Fig. 4.26. Case 1.1.
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Now, either Q(j) is true for each j € {1,3,...,t + 1}, or there is some jo € {5,7,....,t + 1} such that
Q(j) for each odd j < jo, but Q(jo) is not true. If the former then we have a southeastern turn 7% on
€0, €1, ..., €1, ew, €1, ez satisfying (i) and (ii) (blue in Figure 4.26), so assume the latter. By (NCE), ¢;, is
not southern. If €, is eastern then we have southeastern turn on €y, €1, ..., €, satisfying (i) and (ii) (blue
in figure 4.26). Suppose then, that €;, is western (green in figure 4.26). This is impossible: by (1stN).
€711 is not northern; since Q(jo) is false, é;,1 is not southern; and by (DsFP), €;,11 is not western.
End of Case 1.1
k k

CASE 1.2: € is eastern. By (DsFP), é; is not eastern and by

(1stN), €3 is not northern, so é; must be southern. By (NCE) é3 is , _#;(;’2(;
not southern and by (DsFP), é3 is not western. Then é3 must be = Y €
eastern. (DsFP) and (1stN) imply that é; must be southern. i ——
Let Q(j) be the statement: “€; is eastern and €, is southern”. .
Now, either Q(j) is true for each j € {1,3,...,t —1}, or there is some * 1
jo € {5,7,...,t — 1} such that Q(j) is true for each odd j < jo, but > -
Q(jo) is not true . "_J‘eo
CASE 1.2 (a): Q(j) is true for each j € {1,3,...,t —1}. Then we

have a southwestern turn on éy, €1, ..., €;—1, €;, ey . Recall that ey = |
e(k—1,k;1). Observe that R(k—2;1—1) € P,soe(k—2;1—1,1) ¢ H.
Similarly, R(k — 1,1~ 1) € P and e(k — 1,k;1 — 1) ¢ H. It follows
that R(k—3,l—1) € F, R(kz -1 l) € F and that there is a southeastern turn 75 on e(k — 3,k —2;1),
S (k—3,1—1;k—1,1—2), e(k;1 —2;1— 1) satisfying (i) and (i) (blue in Figure 4.27). End of Case 1.2
(a)

CASE 1.2 (b): There is some jo € {5,7,....,t — 1} such that Q(j) is true for each odd j < jo, but Q(jo)
is not true. If €;, is western then we have a southeastern turn on €y, €1, ..., €;,. Then as in Case 1.2 (a),
there is a southeastern turn 75 satisfying (i) and (ii) (in blue in Figure 4.27, with ej, in green).

By (DsFP), €;, is not southern. Suppose then ¢;, is eastern. This is impossible: by (1stN). é;, 11 is
not northern; since Q(jo) is false, €, 11 is not southern; and by (DsFP), é;,11 is not eastern (in orange
in Figure 4.27). End of Case 1.2 (b). End of Case 1.2.

Fig. 4.27. Case 1.2 (a) and (b)

CASE 2: ey is northern. By Case 2 in Lemma 4.7, ?, has a southeastern turn 77. We continue sweeping
K, beginning from ey, until we find the first southern edge eg in the subtrail ?(ew,es) of K. where
es = (E,ZT+ 1) = ép. We write (1stS) to refer to the fact that eg is the first southern edge encountered
after ey, whenever we appeal to it. Let €1 be the edge preceding € in the sweep, let €; be the edge
preceding the edge €;_; in the sweep and let €41 = ey. Then € is western or é€; is eastern.

CASE 2.1: €3 is western. Note that the assumption that e; is northern implies that é; # ey, otherwise
there is a cycle es, e1, ew, 9. By (DsFP), €5 is not western and by 1stS, é3 is not southern, so €5 must
be northern. By (DsFP)és is not northern or eastern. Then €3 must be western. By 1stS é; is not
southern, and by (DsFP), é; is not western. Then €; must be northern. Let Q(j) be the statement: “€;
is western and €;7 is northern. Then either Q(j) is true for each j € {1,3,...,t — 1} or there is some
Jo € {5,7,....;t — 1} such that Q(j) for each odd j < jo, but Q(jo) is not true.

F k CASE 2.1 (a): Q(j) is true for eachj € {1 3,...,t —1}. Then
there is a northeastern turn on eo,el, ey €11 1,€t,ew,€1,62 As

in Case 1.2 (a), we have that R(kl—|—1) € P, Rk,l—1)€P,
(k‘ k+1; l+2) ¢ H and e(kJrl lfl,l) ¢H Then there is a
50| ) northeastern turn Ty on e(k; 1 + 2, 1+3), Si(k:—&—l T+3k+2,1),
¢ ;7 e(k+1,k+2;1—1) satisfying (i) and (ii) (in blue in figure 4.28).
té, End of Case 2.1(a).
*
;7;1 CASE 2.1 (b): There is some jo € {5,7,...,t — 1} such that Q(j)
1. t for each odd j < jo, but Q(jo) is not true. If €, is eastern then
nE1

we have a northeastern turn on éy, €y, ..., €;,. Then, as in Case
2 [ 2.1(a), there is a northeastern turn 75 satisfying (i) and (ii).

By (DsFP), ej, is not southern. Suppose then, that €;, is

Fig. 4.28. Case 2.1 (a) and (b). western. This is impossible: by 1stS. 6;'0/:1 is not southern; since
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Q(jo) is false, €, 11 is not northern; and by (DsFP), é;, 17 is not western (in orange in Figure 4.28). End
of Case 2.1. End of Case 2.1(b). End of Case 2.1.

CASE 2.2: ¢ is eastern. By 1stS and (DsFP), é; is northern. _’_‘| N
By (DsFP), é3 is not western. An argument analogous to (NCE- T o
1) in Case 1 can be used to show that T» and the A;-type lie on eAF_

two different sides of the line y = 2 — z. In this case, we have o ‘

that the region Ui ¢ng containing venq is determined by x > 1 and ¢

ly — 2| < x — 1, and the region Uy containing Ts, as defined in the PR

next paragraph, is determined by y >b—1and |z —a| <y —0b+1. = Ao

We will refer to this argument as (NCE-2). Note that by (NCE-2), S i

€3 is not northern. Then €3 must be eastern. By (DsFP) and (1stS) = o €do

€y is not southern or eastern. Then é; must be northern. Fig, 4.29. Case 2.2.

Let Q(j) be the statement: “¢; is eastern and €47 is northern”.

Now, either Q(j) is true for each j € {1,3,...,t — 1}, or there is some jo € {5,7,...,t — 1} such that
Q(5) for each odd j < jo, but Q(jo) is not true. If the former then we have a northwestern turn 7 on
€0, €1, .-, €11, €1, ey satisfying (i) and (ii), (blue in figure 4.29 with é;_1, &, ey dotted orange) so assume
the latter. If €, is western then again we have a northwestern turn 75 on ép, €1, ..., €;, satisfying (i) and
(ii) (blue in figure 4.29). By (NCE-2), €;, is not southern. Then, suppose that €;, is western (green in
figure 4.33). This is impossible: by 1stS. €, 11 is not southern; since Q(jo) is false, é;,+1 is not northern;
and by (DsFP), €11 is not eastern. End of Case 2.2.

Corollary 4.9 Let G be an m x n grid graph, let H be a Hamiltonian cycle of G, let F = G(N[P(X,Y)])
be a looping fat path in G, let T be an admissible turn of F', let L be a leaf of T, and let L’ be the
H-neighbour of L in F. Then:

(a) d(T') > 3, and

(b) L e N[P]\ P and L' € P.

Proof of (a). We prove the contrapositive. For definiteness, assume that 7' is northeastern with northern
leaf Ly = R(k,l —1). Suppose that d(T) < 3. Then d(T) = 2 and the eastern leaf of T must be
Lg = R(k+1,1—2). Note that Ly 4 (0,—1) € F, otherwise Lg, ..., Ly, Ly + (0, —1) is an H-cycle.
Now, by Proposition 4.4, e(k;l — 2,1 — 1) and e(k, k + 1;1 — 2) cannot both belong to H. Then, either
exactly one of e(k;l — 2,1 — 1) and e(k,k + 1;1 — 2) belongs to H, or neither does.
k +1
In |_ CASE 1: exactly one of e(k;1 —2,1 — 1) and e(k, k +
1;1 — 2) belongs to H. By symmetry, we may assume
WLOG that e(k;l1—2,1—1) € H and e(k,k+1;1—2) ¢
H. Note that the assumption that e(k, k+1;1—2) ¢ H
Lp implies that F' is northern. It follows that Ly is an
end-box of P(X,Y). See figure 4.30. End of Case 1.

14

-2 I
Fig. 4.30. Case 1. Fig. 4.31. Case 2.

CASE 2: neither e(k;1—2,1—1) nore(k, k+1;1—2) belongs to H. Then e(k—1,k;1—1), e(k+1;1—3,1—2)
and S_,(k—1,1—2;k,l —3) belong to H. By Lemma 4.1(d), Ly + (0, —1) must be long to P(X,Y). It
follows that at least one of Ly, Ly +(0,—2), Lg and Lg + (—2,0) belongs to P(X,Y’) and is switchable,
contradicting the assumption that F' is a looping fat path. See figure 4.31. End of Case 2. End of proof
for (a).

Proof of (b). Let T be an admissible turn. For definiteness, assume o 41 o 41

that T is northeastern with northern leaf Ly = R(a,b) By Corol- |L_ o ;“ o
lary 4.9(a), d(T) > 3. Then we have that e(a,a+ 1;6—1) € H, " , 3 ,

and that e(a + 1;b — 1,b) ¢ H. By (RSK), Ly + (0,—1) and E_| I

Ly + (1,-1) belong to F. This means that Ly + (0,—1) = Ly is a a
the H-neighbour of Ly in F. Now, either e(a,a+1;b+1) € H or Fig. 4.32(a). Fig. 4.32(b).

e(a,a+1;0+1) ¢ H. If e(a,a+1;b+ 1) € H, then, since Ly is Ao atBORNEH. elo et librDE.

not an end-box of P, Ly € N[P]\ P. Then, by Lemma 4.1 (b), Ly € P. And if e(a,a+ 1;0+1) ¢ H,
then Ly is switchable, so Ly € N[P]\ P. Since Ly € F, by Lemma 4.1 (b), Ly € P. Either way we
have that L’y € P and and Ly € N[P]\ P. See Figure 4.32. End of proof for (b). O
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4.3 Turn weakenings. K W ™1

Definitions. Let H be a Hamiltonian cycle of an m x n grid

graph G. Let T be a northeastern turn of H on {e(k;l — :

L1),S (k+1,K,I'+1),e(k' —1,k';1")} and let Ly and Lg ¢ foee

be the leaves of T'. Define a weakening of T' to be a cascade ILN]_
[l ..oy bs, Where pg is the first valid nontrivial move in the
cascade that has the form L~ L', or L' — L, with L = Ly
or L = Lg. We note that pq, ..., us—1 must avoid T, as T

has no switchable boxes or leaves, other than L; and Ls. Lg

We call a weakening consisting of three or less moves a short 4 e —
weakening. We call the subgraph S| (k + 1,5;k/,I" + 1) the

Stai’)"s—pa,rt Of T and denote it by S(T) We say that T" has Fig. 4.33. A half-open turn 7 in blue, its lengthening
a lengthening T’ if T’ is a northeastern turn of H such that: T’ in orange, Sector(T) shaded in green.

a) d(T’) > d(T) and

b) S(T") 2 S(T) + (1,1).
Analogous definitions apply to southeastern, southwestern and northwestern turns. We note that if 7" is
a lengthening of T, then 7" is unique. Given a turn Ty let 7(Ty) = T be a set of lengthenings such that:

1. Theturn Ty € T

2. The turn 7 € T if and only if 7} is a lengthening of the turn 7;_;.
Define the sector of T to be the induced subgraph of G bounded by e(k, k+1;1), Sy (k+ 1,1 k', U'), e(k' —
1,k;1"), and the segments [(k',I'), (m — 1,)], [(m — 1,'),(m — 1,n —1)], [(m — 1,n — 1), (k,n — 1)],
[(k,n — 1), (k,1)], and denote it by Sector(T'). See Figure 4.33. Analogous definitions apply to sectors of
southeastern, southwestern and northwestern turns.

Lemma 4.10. Let H be a Hamiltonian cycle of an m x n grid graph G, and let T be a turn in H with
d(T) > 3. Then:
I. T has a short weakening or T" has a lengthening.
II. If 7" is a lengthening of T and T” has a weakening of length at most s, then T has a weakening of
length at most s + 1, with s + 1 < min(m, n).

We prove Lemma 4.10 after we use it to prove Proposition 4.11.

Proposition 4.11. Let H be a Hamiltonian cycle of an m x n grid graph G, and let T be a turn in H
with d(T) > 3. Then T has a weakening of length at most min(m,n).

Proof. Let T' = Tj be an admissible turn of H. If Tj has a short weakening, then we’re done, so we assume
T has no short weakening. By I in Lemma 4.10, Tj has a lengthening T7. So, Ty € T, where T = T (Tp).
Since m,n < oo, we have that |T| < co. Let T = {Ty,T1,...,T;}. Then T; has no lengthening; thus, by
I of Lemma 4.10, it must have a short weakening. Then, by induction and II on Lemma 4.10, T has a
weakening. The bound follows immediately. [

Proof of Lemma 4.10. We first remark that none of the moves we use throughout this proof fit the
description of the moves in Observation 3.4 (i) and (ii) in Section 3. We will use this fact repeatedly and
implicitly.

Let H be a Hamiltonian cycle of G and let T be a turn of H with d(7') > 3. For definiteness, assume
that T is northeastern and that T is on {e(k;! — 1,1), S (k+ 1,;; k", I' +1),e(k’ — 1,k";1')}. Let Ly be
the northern leaf of T' and let Ly be the eastern leaf of T. Since d(T) >3, m—1>k+3 and 0 <[ - 3.
Ln can be open or closed, so there are two cases to check.

koo 42 43 Proof of CASE 1: Ly is closed. Proof of I. First we note

n — 1 # I, otherwise H misses v(k + 2,1). Then we must
. have Sy (k +2,l+1;k+3,l) € H. Now,n—1=1+1,
Lx n—1=[0+2,orn—1>143.

k +1 +2

(6] £ 1
|T CASE 1.1: n-1=l+1. By Lemma 1.14, Ly +(0,1) € int(H).
’ This implies that Ly + (2,1) is a small cookie of H, so
B » e(k+3;l,1+1) € H Thene(k+3;1—21—-1) € H. It
Fig. 4.34(a). Case 1 Fig. 4.34(b). Case 1.1. follows that Ly + (2’ 72) = Lg. Butthen Ly — L+ (0’ 1)
is a short weakening of T. End of Case 1.1.

Ly
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CASE 1.2: n-1= [+2. Either e(k, k+1;1+ ].) €EH Kk +1 Kk +1
ore(k,k+1;1+1) ¢ H. i i

CASE 1.2(a): e(k,k +1;1+ 1) € H. Either Ly + | o
(0,2) € int(H) or Ly + (0,2) € ext(H). If Ly +

£
(0,2) € int(H), then Ly + (0,1) — Ly is a short |L_N Ly
weakening of T'. Suppose then, that Ly + (0,2) € = 1 :
ext(H). This implies that Ly + (0,2) is a small Flg@jf(éé?)é) 2&:;(1}3)(@) Flg.L,if(E)%)ceis:t(I;)A(a)'
cookie. Then Ly + (0,1) — Ly + (0,2), Ly
Ly + (1,1) is a short weakening. End of Case 1.2
(a).

k +1 k +1
+2 o +2 - e

CASE 1.2(b): e(k,k+1;1+1) ¢ H. Then S_, (k —
1,141;k,142) € Hand S (k+1,14+2;k+2,l+1) € +1 H +1 i
H. Note that if e(k, k+1;1+2) € H, then H misses
v(k+2,142), so we may assume that e(k,k+1;1+ ¢ £
2) ¢ H. 1t follows that e(k + 1,k +2;1 +2) € H. In In
Then Ly +(0,2) = Ly +(1,2), Ly +(0,1) = Ly Fig. 4.36 (a). Case 1.2 (b): Fig. 4.36 (b). Case 1.2 (b):
is a short weakening. End of Case 1.2(b). End of e(k,k+1;1+2) € H. e(k,k+1;1+2) ¢ H.
Case 1.2.

k +1 K/ 1/ 2/

CASE 1.3: n—1 > 1+ 3. By Case 1.2, we may assume that

L " e(k,k+1;1+1) ¢ H, S,(k—1,141;k,1 +2) € H and that
Si(k+1,1+2;k+2,l+1) € H. Now Ly is either open or closed.

£
| Ln | CASE 1.3(a): L is closed. By previous cases and symmetry we
° may assume that m — 1 > k' + 3. Using symmetry once more,
% we may assume that e(k’ + 1;1',1’ + 1) ¢ H. Then the turn 7' on

+1

{e(k;14+1,14+2), S (k+ 1,14+ 2,k +2,I'+1),e(k' + 1,k +2;1')} is
in H and it is a lengthening of T'. End of proof of I for Case 1.3(a).

o

Proof of II for Case 1.3 (a). WLOG assume that the last move pg
of a weakening p1, ..., s of Tis Z LN, where Ly is the northern
leaf of T'. Then W1y ooy thsy Ly 4+ (0,1) — Ly, is a weakening of T'.
It remains to check that s + 1 < min(m,n). Since the j lengthening 7} in 7(T) is j units north and
east of T, and d(T') > 3, there can be at most min(m,n) — 3 such lengthenings. Since a turn with no
lengthening has a short weakening, s + 1 < 3 + min(m,n) — 3 = min(m, n). End of II for Case 1.3(a).
End of Case 1.3(a).

Fig. 4.37. Case 1.3(a).

k +1 K’ 1’
CASE 1.3(b): Lg is open. Either m —1 <k’ +2orm—1>kK +2. It
will follow from Case 2 that if a turn has on open leaf adjacent to the L "
boundary or at distance one away from the boundary, then we can find
a weakening outright. Therefore, we may assume that m — 1 > k' + 2. ¢

If e(k’;1'"+1,I'+2) € H, then there is a weakening Lr — L+ (0,1), |T|

so we may assume that e(k’;l' + 1,1’ +2) ¢ H. Then the turn 7' on °
{e(k;14+1,1+2),S (k+ 1,1+ 2,k +1,I'+2),e(k', k' +1;I'+1)} isin H % F
and it is a lengthening of T'. End of proof of I for Case 1.3. i

o

Proof of II for Case 1.3(b).Let Ly and Ly be the northern and eastern Fig. 4.38. Case 1.3(b).
leaves of T' respectively, and let 1, ..., 1s be a weakening of T. If p is

the move X — Ly, then, as in the Case 1. 3(a), t1, ..y s, Ly +(0,1) — Ly, is a weakening of T'. Suppose
then that p is the move Z’ — Lg. Then piy, ..., pis, L — Lg +(0,1), is a weakening of T'. The argument
that s +1 < min(m,n) is the same as the one in Case 1.3(a), so we omit it. End of proof of II for Case
1.3(b) End of Case 1.3(b). End of Case 1.3. End of Case 1.

CASE 2: Ly is open. Proof of I. If n—1 = [ then we must have e(k+1,k+2;1) € H. Then Ly — Ln+(1,0)
is a weakening. Therefore, we may assume that n — 1 > [.

CASE 2.1: n—1=1+1. Eithere(k+1,k+2;]) e Hore(k+1,k+2;1) ¢ H.
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CASE 2.1(a): e(k+1,k+2;1) € H. Then e(k, k+

koo, " , oy Lil+1) € Handelk+1k+21+1) € H.
Lx Lx Ix Then by Lemma 1.14, Ly + (0,1) € intH, and
-1 —— -1 so Ly € intH and Ly + (1,0) € extH. Either
k=0,ork >0.
Fig. 4.39 (a). Fig. 4.39 (b). Case Fig. 4.39 (c). Case
Case 2. 21(a1). Ly +(=1,0)is  2.1(a1). Ly +(=1,0) is CASE 2.1(a1): k > 0. Then Ly + (-1,0) €
n—1=1L a small cookie. not a small cookie. GXtH7 and LN+(_1a 0) is either is a small cookie

of H or it is not. If the former, then Ly —
Ly + (—1,0) is a short weakening; and if the latter then Ly — Ly + (1,0) is a short weakening. See
figures 4.39 (b) and (c). End of Case 2.1(ay).

0 1 2 3 4

CASE 2.1(az): k = 0. Then e(0;1,l+ 1) € H, e(0;1 —2,l — 1) € H, and
S.(0,1 —2;1,1 —3) € H. This implies that 0 < [ — 4 and that S (1,1 — Jd o "
3;0,l —4) € H. Then we must have S4(2,1 —4;3,1 — 3) € H as well, that Lx
Lg =Ly +(2,-2) and that Lg + (0, —1) € extH. See Figure 4.40. Note that -1
if Lg+ (0, —1) is a small cookie, then Lg — Lg+ (0, —1) is a short weakening,
so we may assume that Lg + (0, —1) is not a small cookie. Note that this
implies that 0 <[ — 5.

If e(3;1—4,1—3) € H, then again Lg — Lg+ (0,—1) is a short weakening.
Similarly, if e(3;1— 2,1 —1) € H, then Lg — Lg+ (0,1) is a short weakening. _,
Therefore we only need to check the case where e(3;] — 4,1 — 3) ¢ H and Fig. 4.40. Case 2.1(a2)
e(3;1—2,1—1) ¢ H. Then Lg + (1,—1) € extH, and by the assumption that H is Hamiltonian,
m — 1> 4. Then we have S|(3,1;4,1 — 1) € H.

0 1 2 3 4 Note that either e(2,3;1 + 1) € H and e(2,3;1) € H, or e(2;1,1+ 1) €

-3

H and e(3;1,l + 1) € H. FEither way, we must have e(3,4;1) ¢ H and
A — " e(3,4;14+1) € H. Now, either e(3;1—3,1—2) € Hore(3;1—3,1—2) ¢ H.
Lx
-1 CASE 2.1(az).(i): e(3;1 — 3,1l —2) € H. Then Lg + (1,0) € extH. By
= Lemma 1.14, this implies that m — 1 > 5. If e(4;] — 3,1 — 2) € H,
-2 then Lg + (1,0) — Lg is a short weakening, so we may assume that
Le = e(4;1-3,1—2) ¢ H. Then S| (4,1—1;5,1—2) € H and S;(4,1—4;5,1-3) €
- il H. We must also have that S| (4,1+1;5,1) € H and e(5;1,14+1) € H. Then
. T e(5;1—2,1—1) € H as well. See Figure 4.41. Then Lg+(2,0) — Lg+(2,1),
Fig. 4.41. Case 2.1(az).(i) Lg + (1,0) — Lg is a short weakening of T. End of Case 2.1(a2).(i).
0 1 2 3 4 0 1 2 3 4
CASE 2.1(as).(ii): e(3;1—3,1—2) ¢ H. J
Then 6(3, 4;1 — 3) € H and 6(3,4;l — 2) S el m el m
H. Now, either e(2,3;1 + 1) € H and Lx = Lx =
e(2,3;1) € H, or e(21,1 +1) € H and -1 -1
e(3;1,l+1) e H. = = = =
—2 —2
CASE 2.1(ay).(ii)1 e(2,3;1+1) € H and Lo B L
e(2,3;1) € H. Thene(4;1—2,1—1) ¢ H. I 1
Note that if e(4;1 — 1,1) € H, then Lg + _, 1 . il
(1, 1) — LE + (1’ 2)7 LE — LE + (0, 1) is a Fig. 4.42(a). Case 2.2.a2(ii)1. Fig. 4.42(b). Case 2.2.a2(it)2.

short weakening of T', so we may assume that. e(4;1—1,1) ¢ H. Then e(4,5;1—1) € H, S;(4,1+1;5,1) €
H, and e(5;1,1+1) € H. Then Lg + (2,2) = Lg +(2,3), Ly + (1,1) = Lg + (1,2), Ly — L + (0,1)
is a short weakening of T. End of Case 2.1(ag).(4)1.

CASE 2.1(a3).(ii)2: e(2;1,1 4+ 1) € H and e(3;1,1 + 1) € H. Now, if e(4;1 — 2,1 — 1) ¢ H, than we
can use the same argument and find the same cascades as in Case 2.1(ag).(i7); (Fig, 4.22(b); and if
e(4;1—2,1—1) € H, then we must have that e(5;1—2,1—1) € H as well. Then Ly +(2,1) —» Lg+(1,1),
Then Ly — Lg + (0,1) is a short weakening of 7. End of Case 2.1(a2).(i4)2. End of Case 2.1(az).(i1).
End of Case 2.1(az). End of Case 2.1(a).

CASE 2.1(b): e(k+1,k+2;1) ¢ H. Then we must have e(k+1;1,i+1) € H and S| (k+2,1+1;k+3,1) € H.
Now, either e(k + 1,k +2;l+1)¢ Hore(k+1,k+2;1+1) € H.
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CASE 2.1(b1): e(k+1,k+2;1+1) ¢ H. Then we must
have e(k+2,k+3;1+1) € H and that Ly +(1,1) € extH

i £

is the neck of the large cookie. Then k£ > 0, or k = 0. k41 42 4 I .
If £ > 0, then after Ly + (1,1) = Ly + (2,1), we are

back to Case 2.1(a1). And if k = 0 then we are effectively o —_— 2

in the same scenario as in Case 2.1(az), with the additional, Ln Le

inconsequential assumption that Ly + (1,1) € extH is the Fig. 443(), Coso2.100).  Fig, 443(b). CaseZT(bzf

neck of the large cookie. End of Case 2.1(b1).

CASE 2.1(by): e(k+1,k+2;1+1) € H. Thene(k,k+1;l1+1) ¢ H and S (k+2,l+1;k+3,]) € H.
Then we must have that e(k + 3;1,1 + 1) € H as well. This implies that e(k + 3;1 — 2,0l — 1) € H. Tt
follows that Ly + (2,—2) = Lg, and that Lg is open. Then Lg — Lg+ (0, 1) is a short weakening. End
of Case 2.1(by). End of Case 2.1(b) End of Case 2.1.

k +1 K/ 1/

’ CASE 2.2: n—1 > 1+ 2. By previous cases we may assume that
1 m—12>k+2 ek+1Lk+21) ¢ H, e(k+1;l,l+1) € H and
Lx Si(k+2,1+1;k+3,1) € H. If Lg is closed, then we're done by Case 1,
¢ . " so we may assume that Lg is open. By Case 2.1, we may assume that
" e(k';' +1,I' +2) ¢ H. Then the turn T on {e(k + 1;1,1+ 1), 5, (k +
.o. = 2+ LK +1,I'4+2),e(k',k"+1;1'’+1)} is in H and it is a lengthening

+1 — of T'. End of proof of I for Case 2.2.
, Le The proof of IT for Case 2.2 is the same as the proof of II for Case

‘ Fig. 4.44. Case 2.2, 1.3 (a). End of proof for Case 2. O

Observation 4.12. All turn weakenings found in Lemma 4.10 are contained in Sector(T). OJ

Lemma 4.13. Let G be an m x n grid graph, and let H be a Hamiltonian cycle of G. Let F' be a looping
fat path of G, anchored at some outermost small cookie C'. Then F' has an admissible turn 7" such that
Sector(T) and the j-stack of Ay’s following C' are disjoint.

Proof. For definiteness, assume that C is a
small northern cookie, with L = R(k'—1,1'+1).
Let FF = G(N[P(X,Y)]) be the looping H
path following L, as in Lemma 4.7, with X =
R(K',I" —1). Let ? and ew,eq,...es be as in
Lemma 4.7 as well. By Lemma 4.7, F has a
turn 77. By proof of Lemma 4.7, either 77 is a X
northeastern turn with X as its northern leaf, —I

or it is not.

CASFE 1: Ty is a northeastern turn with X as & J
its northern leaf. Then e; is southern. By 1z

proof of Lemma 4.8, T5 is either southeastern

or southwestern. In either case, we note that

Sector(T) s sonth of the stack of dgs. By Fe o it G L)
Lemma 4.8, Ty is admissible. End of Case 1. ‘ ‘ ‘

CASE 2: Ty is not a northeastern turn with X as its northern leaf. By proof of Lemma 4.7, T} is a
northeastern turn or 73 is a southeastern turn.

. CASE 2.1: Ty is a northeastern turn.

It follows from the proof of Lemma 4.7

. that Sector(T7) is east of the stack of

e T Agp’s, that both leaves of T} are in F,

0 , and that neither leaf of 77 is an end-
X <X box of P(X,Y). End of Case 2.1.

T1 4

t CASE 2.2: Ti is a southeastern turn.

It follows from the proof of Lemma

Fig. 4.46(a). An illustration of Case 2.1. Fig. 4.46(b). An illustration of 4.7 that Sector(T7) is southeast of the
Case 2.2. The line z = y in red.
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stack of Ag’s. More precisely, we can check that Sector(7}) is below the line y = z + (I’ — k'), and the
j-stack of Ag’s is above the line y = x4+ (I’ — k’). By proof of Lemma 4.7, we have that both leaves of T}
are in F, and that no leaf of T} is an end-box of P(X,Y). End of Case 2.2. End of Case 2.

Now we are ready to give a proof of Lemma 3.13.

Lemma 3.13. Let G be an m x n grid graph, and let H be a Hamiltonian cycle of G. Let C be a small
cookie of G. Assume that G has only one large cookie, and that there is a j-stack of Aj starting at the
Ag-type containing C. Let L be the leaf in the top (j'") Ay of the stack, and assume that L is followed
by an A;-type. Let X and Y be the boxes adjacent to the middle-box of the A;-type that are not its
H-neighbours. If P(X,Y’) has no switchable boxes, then either:

(i) there is a cascade of length at most min(m,n), which avoids the stack of Ay’s, and after

which P(X,Y) gains a switchable box, or
(ii) there is a cascade of length at most min(m,n) + 1, that collects L and avoids the stack of Ag’s.

Proof. Suppose that P(X,Y’) has no switchable boxes. Then P(X,Y) is contained in a looping fat path
F = G(N[P(X,Y)]). By Lemma 4.13, F' has an admissible turn T" such that Sector(T") and the j-stack of
Ag’s are disjoint. Then, by Corollary 4.9(a), d(T) > 3. By Proposition 4.11, T has a weakening p1, ..., f1s.
By Observation 4.12; uq, ..., s is contained in Sector(T"), and thus it avoids the j-stack of Ag’s.

-1 a +1 -1 a +1

+1 +1
a 41 42 a 41 42 o o
+1 +1 b b
Lx Ly X Y= | X Y = |
b b T 1 T -1
B 1 Hs B 1 Hs
T -1 T - 1 -2 -2
| L L
-2 -2
Fig. 4.47(a). Ly+(0,—1) Fig. 4.47(b). After us. Fig. 4.48(a). Ly+(0,—1) Fig. 4.48(b). After pus.
is not an end-box. is an end-box.

For definiteness, assume that 7' is northeastern with northern leaf Ly = R(a,b) and that pg is the move
Ly — L'y or the move Ly — Ly. By Corollary 4.9(b), Ly € N[P]\ P and Ly + (0,—1) € P. Note
that we must have S_,(a,b —1;a+ 1,0 —2) € H, e(a,a+ 1;b) ¢ H and e(a + 1;b — 1,b) ¢ H. Now,
either Ly + (0, —1) is an end-box of P or it is not. If the latter then, e(a;b — 1,0 ¢ H). Then, after us,
Ly+(0,—1) € P(X,Y) is switchable. The fact that s < min(m,n), follows immediately from Proposition
4.11. Thus, in this case, (i) holds.

Suppose then, that Ly + (0, —1) is an end-box of P, say Y. This implies that e(a;b—1,b) € H, that
F is northern, and that L = Ly +(—1, —3). Then p, can be followed by Y +(—1,0) — Y, L+(0,1) — L,
which collects L. To check the length of the cascade, first we note that b+ 1 > 4, and that the eastern
leaf of T has x-coordinate at least 5. It follows that |7 (T)| < min(m,n) — 4. It follows from the proof of
Lemma 4.10 that T has a weakening of length at most min(m,n) — 4 + 3. Since we need two additional
moves after ps to collect L, the length of the cascade is at most min(m,n) — 4 + 3 + 2 = min(m,n) + 1
moves. Thus, in this case, (ii) holds. O
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